

AC SERVO DRIVES Σ -7 SERIES

Σ -7 Series of AC Servo Drives

Everyone's preferred choice of Servo Drives

Since the release of the first Σ series of Servo Drives in 1992, Yaskawa Electric has consistently made innovations to existing technologies to find solutions for problems that users experience. Users have always sought high-speed, high-accuracy, and easy-to-use products, and this demand rises every year.

In 2013, the Σ series of Servo Drives evolved into the Σ -7 Servo Drives, which provides users with the ultimate experience in seven key areas and delivers the optimal solutions that only Yaskawa can offer. With the superlative performance and outstanding ease of use of the Σ -7 series, Yaskawa can offer solutions that will make the Σ -7 Servo Drives the preferred choice of customers at any point in the life cycle of their systems.

Ultimate system performance Pages M-4 to M - Superlative performance with improved efficiency and speed

Attention developers/engineers

See pages M-6 and M-7 for examples of the high performance of the Σ -7 series in "pick and place" applications. Contact Yaskawa for details on this and additional applications.

Ultimate ease of use page M-8

No tuning required with the Σ -7 series upgraded tuning-less function to achieve stable movement with no vibration.

Attention developers/engineers production maintenance personnel

You can check the level of performance of actual operations with the use of demonstration units. Contact Yaskawa for a demonstration.

Ultimate environmental performance M-9

Each product has improved specifications to meet even the most stringent environmental requirements. Servo Drives can now be used in different countries and regions, and under a variety of conditions.

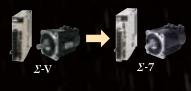
Attention developers/engineers operators

Are there any operating environments that you have given up on? The Σ -7 servos have an increased ability to cope with temperature rises in systems, comply with the IP67 resistance to water immersion rating, and have greater global support (AC 240 V input and operable at an altitude of 2,000 meters*). Compact and energy saving systems can also be easily built with the Σ -7W two-axis SERVOPACKs.

ultimate

olutions

e-motional


* At this altitude, the servo drives will operate at reduced ratings.

Ultimate compatibility Page M-13

Programs and parameters used with Σ -V SERVOPACKs are compatible with Σ -7 SERVOPACKs. The performance of your systems can be easily enhanced with a simple replacement.

Attention developers/engineers

There is no need to change your system design because the sizes of the Σ -V Servo Drives are the same as those of the Σ -7 series. The improved shape of the mounting screws makes them easier to secure. With the ensured compatibility of programs and parameters, it is easy to replace Σ -V Servo Drives with Σ -7 Servo Drives.

Ultimate lineup

You can choose from a rich product lineup of the Σ -7 series as well as from the compatible products of Yaskawa's partner companies to easily build just the right system for your needs.

Attention developers/engineers

Compatible products made by our partner companies are also available. You can prepare all the motion devices required for your system with our one-stop, all-in-one service.

· It is now possible to drive rotary, Linear, or Direct Drive Servomotors using the same SERVOPACK model in the \varSigma -7 series. This helps to reduce the number of Servo Drives that are put in storage.

Ultimate support

Full support is available from selection to maintenance. Maintenance is easier because product information can be viewed by using a smartphone.

Attention developers/engineers maintenance personnel

with a smartphone

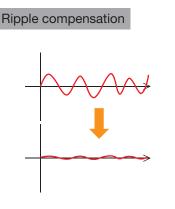
Services* that take full advantage of the latest technology, such as cloud storages, QR codes, and smartphones are readily available. They add another dimension of convenience and ease in terms of product information control and maintenance work.

* Currently available in Japan. Overseas service will be available in the coming months. Note: QR code is a trademark of Denso Wave Incorporated.

4 Ultimate safety and security

The Σ -7 Servo Drives satisfy the IEC 61508 safety integrity level 3 (SIL 3). Safety is also ensured with temperature sensors mounted in products. These Servo Drives can be used as system components with safety guaranteed.

Attention developers/engineers operators maintenance personnel


It is absolutely essential to ensure the safety of systems and protect against temperature increases. The Σ -7 Servo Drives are fully equipped with all the necessary safety measures, which reduces the amount of work required for system design and maintenance.

Ultimate system performance

The high-performance of Σ -7 SERVOPACKs translates into ultra-high-speed and ultra-high-accuracy control, which maximizes system performance.

Σ -7S Single-axis SERVOPACKs

- ★ 3.1 kHz response frequency
- ★ Optimized for specific applications: New models in EX and FT series to be released
- ★ Improved vibration suppression

 Σ -7 SERVOPACKs can reduce speed ripples caused by motor cogging, even for machines for which speed loop gains cannot be set high. This ensures smooth operation.

Enhanced vibration suppression function

Notch filter

Suppresses high-frequency vibrations of 500 Hz or higher. \Rightarrow Number of filters increased from 2 to 5.

- Anti-resonance control Suppresses vibrations at frequencies ranging from several hundred Hz to 1 kHz.
- ⇒ Vibrations can now be suppressed at multiple frequencies in comparison with one frequency in earlier models.
- Vibration suppression
- Suppresses vibrations at low frequencies (30 Hz and lower).
- ⇒ Vibrations can now be suppressed at two different frequencies (in comparison with one frequency in earlier models).

These functions can be adjusted automatically using the autotuning function.

SERVOPACK

Σ -7W 2-axis SERVOPACKs

- ★ 2-axis SERVOPACKs (200 W x 2 axes to 1 kW x 2 axes)
- ★ 3.1 kHz response frequency
- \star Improved vibration suppression

INIOUEI			
SGM7J	50 W 🚥 0.75 kW		
SGM7A	50 W	7 kW	
SGM7P	100 W 🚥 1.5 kW		
SGM7G	300 W		15 kV

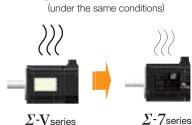
Σ -7 Servomotors

- ★ Compact dimensions (approx. 80% smaller than our earlier models.)
- ★ High-resolution 24-bit encoder incorporated (16,777,216 pulses/rev)
- ★ Maximum torque: 350% (small capacity)

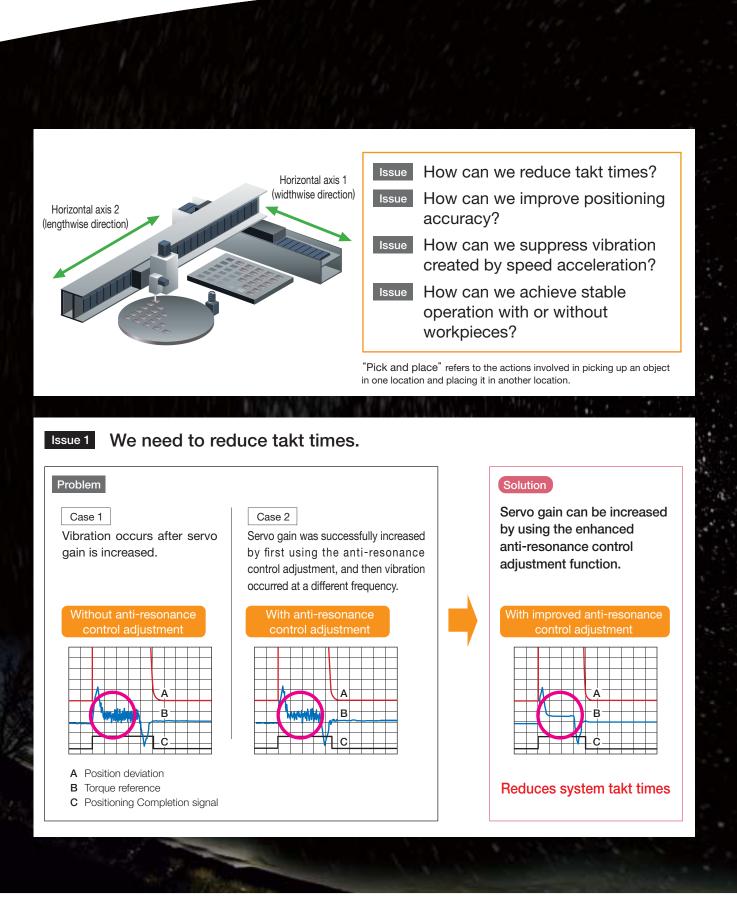
High-resolution, 24-bit encoder

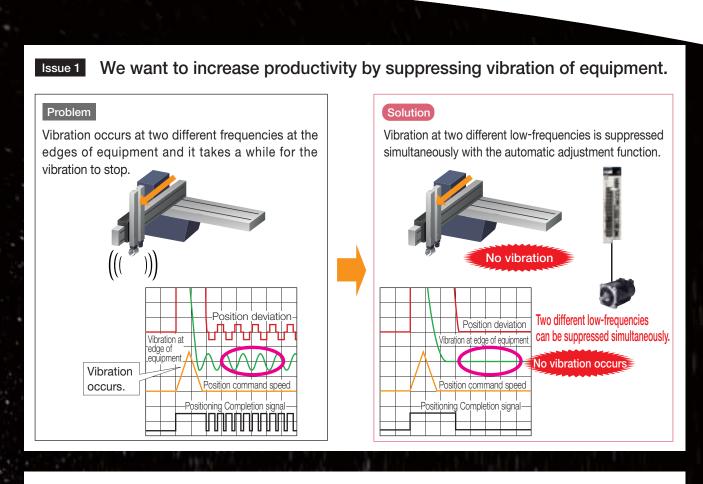
 Σ -7 Servomotors (50 W or greater) use encoders with a resolution that are 16 times higher than those used in Σ -V Servomotors.

Encoder resolution comparison


Solution for 50-W or greater models.

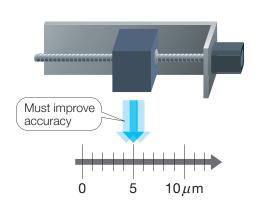
High efficiency and low heat generation


 Σ -7 Servomotors use an optimized magnetic circuit that improves motor efficiency and reduces heat generation.


(comparison with typical models.)

About 20% reduction in temperature increase!

 Σ -7series



Issue 2 We want to improve positioning accuracy to handle parts that are becoming increasingly smaller.

Problem

Positioning accuracy needs to be improved because parts that are handled are becoming increasingly smaller.

ust the Solution trick High-precision positioning becomes possible for precision 5 10*µ*m workpieces by replacing the Vibration when stopped existing drive with the ±10nm level also possible Σ -7 Servo Drive. Note: This will depend on the installation conditions. Σ -7S SERVOPACKs Highest performance in the industry · 3.1 kHz response frequency · Improved vibration suppression

Σ -7 Servomotors

High-resolution encoders 24 bits = 16,777,216 pulses/rev

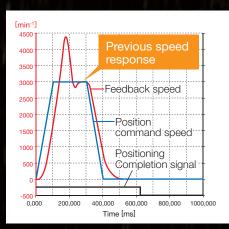
For 20 mm lead ball screws 1.2 nm resolution

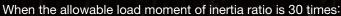
Ultimate ease of use

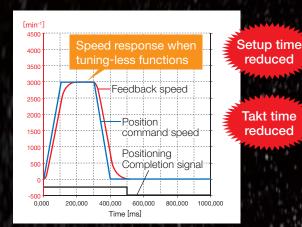
2

Yaskawa's original tuning-less function has undergone further development. Stable operations can be achieved without having to adjust gains.

No need to adjust servo gains


With Yaskawa' s original tuning-less function, systems can run without vibration for a load with 30 times (max.) of load moment of inertia. Systems remain stable even with load changes during operation.


	\varSigma -VSeries	\varSigma -7 _{Series}
Allowable load moment of inertia ratio	30 times (max.)	30 times (max.)
Max. control gain	Speed loop gain 40 Hz (approx.)	Speed loop gain 70 Hz (approx.)


reduced

Takt time

reduced

Solution Example Robot

The robot's arm maintains stable movements even when the moment of inertia changes due to changes in the robot's posture.

Improved response Response is about twice as fast as

before and requires no adjustment. Improved stability

Stable operation is assured even in systems with load fluctuations.

No need for gain adjustments High-level performance is assured although no tuning is required.

Ultimate environmental performance

The Σ -7 Servo Drives can be used in harsh environments and conserve energy. Optimal systems can be easily set up in different countries and under a variety of conditions.

IP 67-

Satisfies specifications for use overseas and in harsh operating conditions

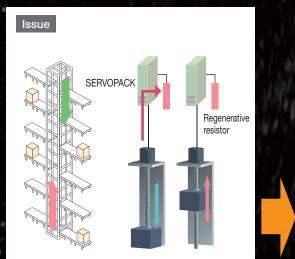
- · 240 VAC supply voltage also supported
- · High-altitude use increased to 2,000 meters above sea level* Maximum ambient temperature raised to 60°C*
- * Derating required.

Waterproof protective structure upgrade to IP67 rating

[SGM7J, SGM7A (IP22 for 7.0 kW), and SGM7G models]

Protective Structure (IEC 144, 529, DIN40050, JEM1030)

○ Rating for protection from water:


The units can be used even when they are immersed in water under specific conditions (immersed at a depth of 1 m below the surface of the water for 30 minutes).

© Rating for protection from contact and entry of solid foreign objects: Safe dust-proof structure

Structure is completely protected from the entry of dust.

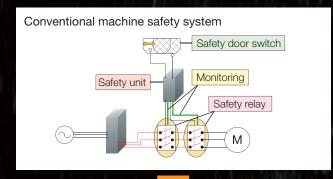
Solution Example

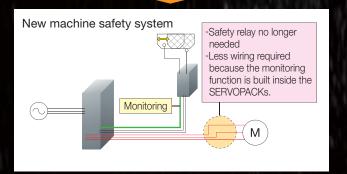
Regenerative energy effectively used to help save energy

Regenerative power used to be converted to heat by using regenerative resistors. With global warming, CO₂ emissions must be cut by reducing power generation that produces CO₂, such as thermal power.

- By replacing the existing amplifiers with the Σ -7W 2-axis SERVOPACKs or using a DC bus connection, the regenerative energy of multiple axes can be used as the drive energy.
- This means that the energy inside the system can be utilized more effectively.
- Status of energy consumption in the system can be viewed on a display by using machine controllers.

(image)


Ultimate safety and security

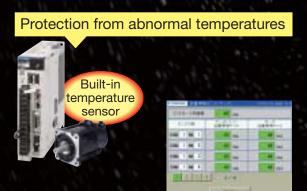

4

Systems can be operated safely because the Σ -7 Servo Drives comply with safety standards and safety is ensured by monitoring.

Satisfies requirements of the SIL 3 of the IEC 61508 functional safety standards (first in Japan)

Certification will make it easier to set up systems that conform to safety standards for press machines and other systems in Europe and other regions. Certification also helps reduce the number of hours required for wiring and of peripheral devices. Complies with Stop Category 0 (Safe Torque Off)

	Safety standards	Performance level & category			
Safety of	EN ISO13849-1	PLe (CAT3)			
machinery	IEC 60204-1	Stop Category 0			
	IEC 61508	SIL 3			
Functional safety	IEC 62061	SIL CL3			
,	IEC 61800-5-2	STO			

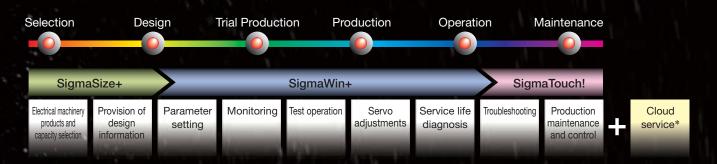

The safety function works even for a single problem.
The safety function is enhanced with compliance with the EN ISO 13849-1 PLe (performance level e).

Note: Although the safety performance level of the Σ -V series Servo Drives is PLd (performance level d), the benefits described in the figure on the left apply.

Systems that need to satisfy the required performance level e (PLr e) can easily be configured.

Protect systems from high temperatures

 Σ -7 SERVOPACKs and Servomotors are equipped with temperature sensors that can directly monitor temperatures of machines and detect abnormalities to prevent failures. Real-time temperatures can be viewed on a display by using Machine Controllers.



Temperature monitoring display (image)

M-10

Cloud-based storage of product data facilitates data retrieval when needed.

Maintenance throughout a product's service life is improved and simplified with SigmaTouch!*, Yaskawa's smartphone application.

Single or multiple orders possible after specifying parameters

Customers can now place single or multiple orders for SERVOPACKs in the Σ -7 series after specifying parameters at the factory shipment stage. No longer is it necessary to write the parameters at the system assembly site, which means that production lead times can be reduced.

Product management and maintenance service

Manufacturing information of each product can be easily viewed by using SigmaTouch!, Yaskawa's smartphone application. To view, simply hold your smartphone over the QR code of the product.

Improve troubleshooting

• If you have a smartphone, troubleshooting information can be accessed by reading a product's QR code.

• Automatic tracing is possible when a SERVOPACK alarm occurs. This allows you to detect and solve problems promptly.

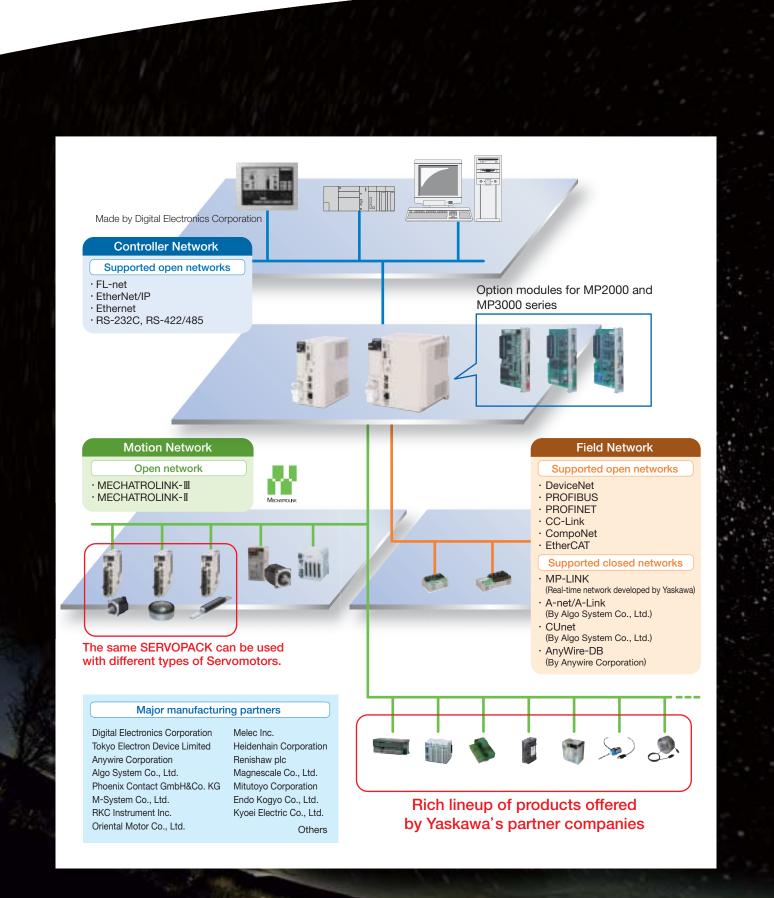
Planned maintenance now available by monitoring the operational status

The service life of the maintenance can be estimated, and the users are notified when the parts should be replaced. System failure can be prevented because parts can be replaced before products break.

* Currently available in Japan. Overseas service will be available in the coming months.

Features:

Simply access the MechatroCloud service* and hold your smartphone over the QR code of the product. You can access the product data stored in the MechatroCloud, and view the manual for that product.

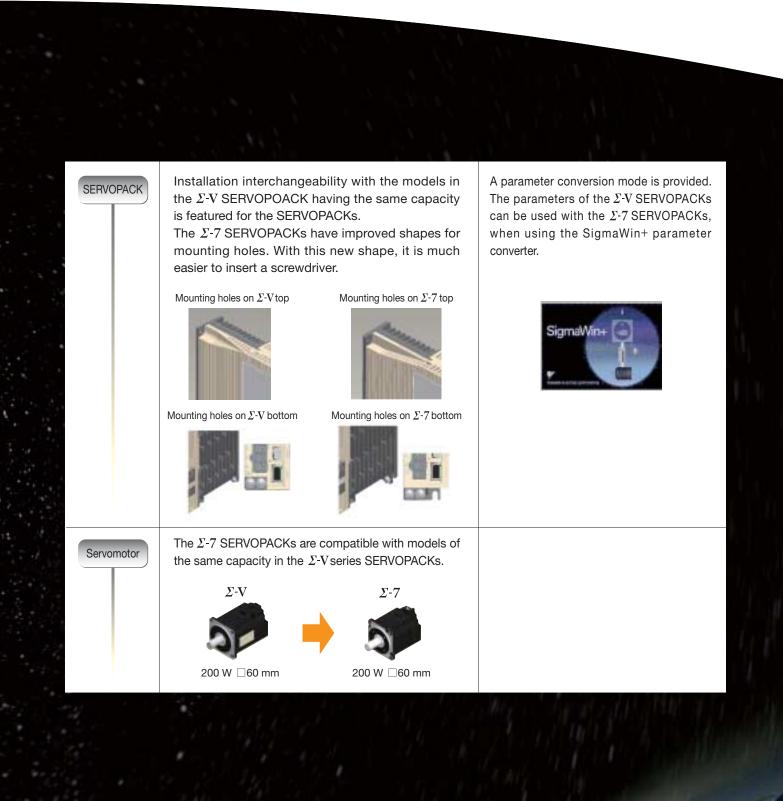

Note: MechatroCloud is a new colud service provided by the the Yaskawa Electric.

A. Jardy West	第 名回動的工程 ¹	-51	1	JE DI TUTI	Ĺ
4.28 1 (#	128 100/111	252	1000 C	調告	1878.
1 1	1	\$4.00	新. (4)	36.00	17,00
226 14	23	24.00	28.00	140	31 00
1 8	34			ini ini	1000
1 3	33	34 00	26.00	38.00	11 00
1 4	33	38.60	13.18	3.00	37 MI
1 3	at .	14	394	241	PAC.
-	113	1%4			

Display for total hours of use and remaining service life (image)

Ultimate lineup

You can construct a system that exactly meets your requirements using communications networks and the rich lineup of products offered by Yaskawa's partner companies.



6

Ultimate compatibility

7

Compatibility with earlier series is assured. You can improve the performance of your system by replacing devices currently used with Σ -7 Servo Drives.

Servomotors

Rotary Servomotors*

SGM7J (Medium inertia, high speed) 50 $W\!-\!750$ W

Direct Drive Servomotors

Small capacity, coreless (SGMCS) 2 N \cdot m -35 N \cdot m

Linear Servomotors

SGLG (Coreless model) 12.5 N-750 N

SGLT (Model with T-type iron core) 130 N-900 N

SERVOPACKs

 Analog voltage/ pulse train reference


SGD7S-DDA00A

SGM7A (Low inertia, high speed) 50 W-7 kW

Small capacity, with core (SGMCV) 4 N \cdot m -25 N \cdot m

SGLFW (Model with F-type iron core) 25 N – 1120 N

SGLC (Cylinder model) 17 N-180 N

SGM7G (Medium inertia, large torque) 300 W - 15 kW

Medium capacity, with core (SGMCS) 45 $N\cdot m$ –200 $N\cdot m$

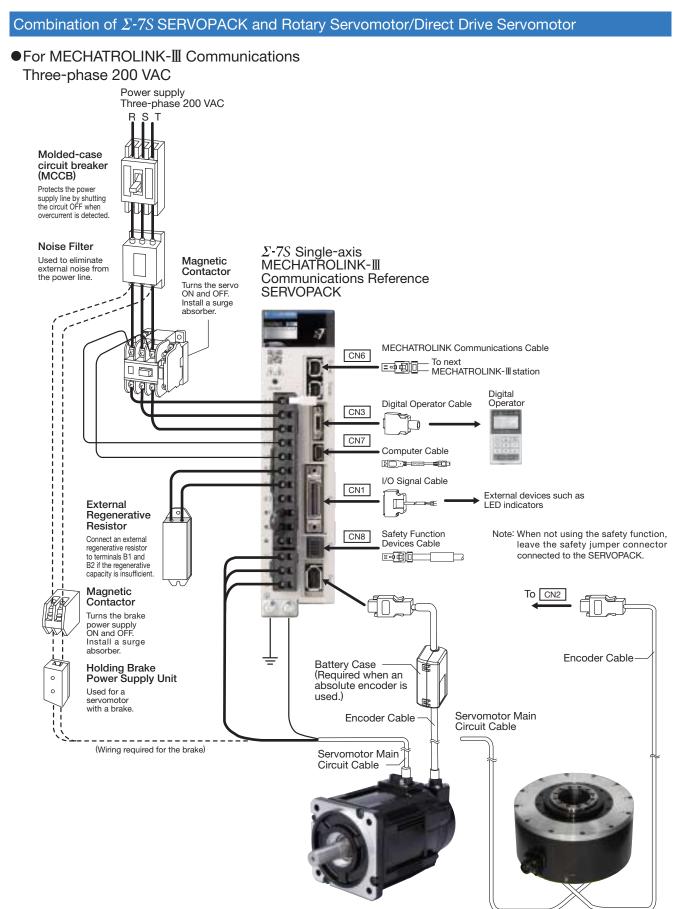
SGLFW2 (Model with F-type iron core) 45 N-1680 N

* SGM7P model (Medium inertia, flat type) is also available.

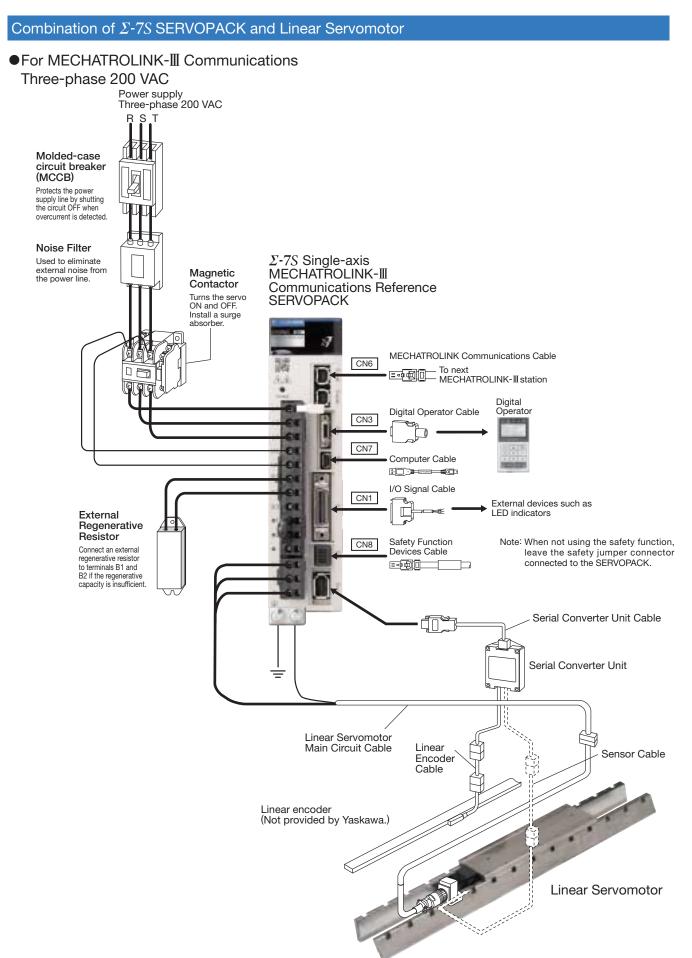
 MECHATROLINK-II communications reference

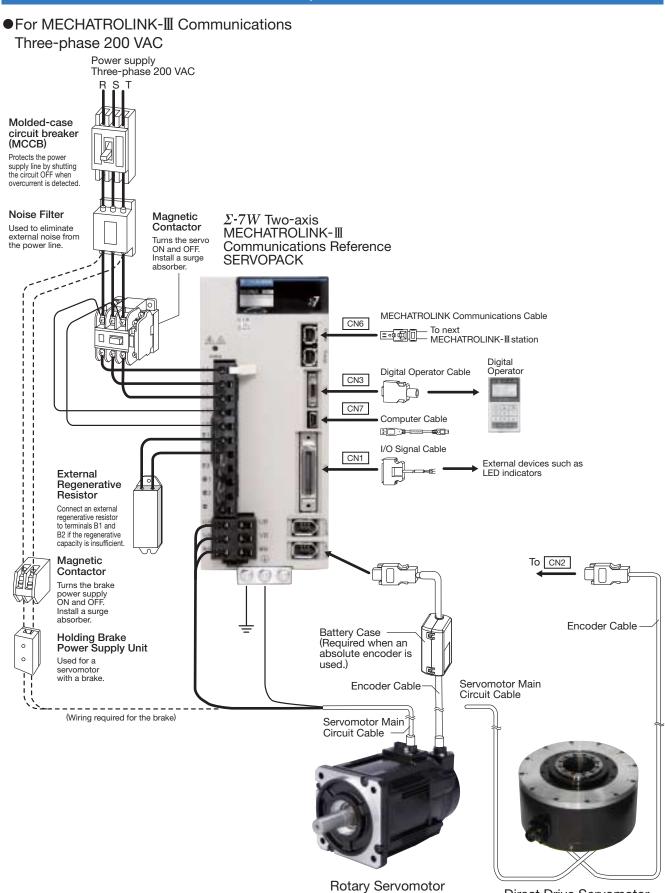
SGD7S-DDA10A

◆ Single-axis MECHATROLINK-Ⅲ communications reference



SGD7S-DDA20A


 Two-axis MECHATROLINK-III communications reference



SGD7W-DDA20A

Direct Drive Servomotor

Combination of Σ -7W SERVOPAK and Rotary Servomotor/Direct Drive Servomotor

\varSigma -7 Series Combination

Combination of Rotary Servomotors and SERVOPACKs

Datase	stan Maralal	Data d Outrout	SERVOP	ACK Model	
Rotary Servome	otor Model	Rated Output	SGD7S-DDD	SGD7W-DDD	
	SGM7J-A5A	50 W	R70A		
	SGM7J-01A	100 W	R90A	- 1R6A*1, 2R8A*1	
SGM7J	SGM7J-C2A	150 W	1004	4004 0004*1	
(Medium inertia, high speed)	SGM7J-02A	200 W	— 1R6A	1R6A, 2R8A*1	
3000 min ⁻¹	SGM7J-04A	400 W	2R8A	2R8A, 5R5A*1, 7R6A*1	
	SGM7J-06A	600 W	CDC A		
	SGM7J-08A	750 W	— 5R5A	5R5A, 7R6A	
	SGM7A-A5A	50 W	R70A	4004*1.0004*1	
	SGM7A-01A	100 W	R90A	- 1R6A*1, 2R8A*1	
	SGM7A-C2A	150 W	1004	1004 0004*1	
	SGM7A-02A	200 W	- 1R6A	1R6A, 2R8A*1	
	SGM7A-04A	400 W	2R8A	2R8A, 5R5A*1, 7R6A*1	
	SGM7A-06A	600 W	5554	5554 3504	
SGM7A	SGM7A-08A	750 W	— 5R5A	5R5A, 7R6A	
(Low inertia, high speed)	SGM7A-10A	1.0 kW	100.1		
3000 min ⁻¹	SGM7A-15A	1.5 kW	— 120A		
	SGM7A-20A	2.0 kW	180A		
	SGM7A-25A	2.5 kW	0004		
	SGM7A-30A	3.0 kW	200A	_	
	SGM7A-40A	4.0 kW	0004		
	SGM7A-50A	5.0 kW	— 330A		
	SGM7A-70A	7.0 kW	550A	1	
	SGM7P-01A	100 W	R90A	1R6A*1, 2R8A*1	
SGM7P	SGM7P-02A	200 W	0004		
(Medium inertia, flat type)	SGM7P-04A	400 W	- 2R8A	2R8A, 5R5A*1, 7R6A*1	
3000 min ⁻¹	SGM7P-08A	750 W	5R5A	5R5A, 7R6A	
	SGM7P-15A	1.5 kW	120A	-	
	SGM7G-03A	300 W	0004		
	SGM7G-05A	450 W		5R5A*1, 7R6A*1	
	SGM7G-09A	850 W	7	R6A	
	SGM7G-13A	1.3 kW	120A		
SGM7G	SGM7G-20A	1.8 kW	180A		
(Medium inertia, large torque)	SGM7G-30A	2.9 kW*2	0004		
1500 min ⁻¹	SGM7G-44A	4.4 kW	330A		
	SGM7G-55A	5.5 kW	470A		
	SGM7G-75A	7.5 kW	550A		
	SGM7G-1AA	11 kW	590A		
	SGM7G-1EA	15 kW	780A		

*1. If you use this combination, performance may not be as good, e.g., the control gain may not increase, in comparison with using a Σ -7S SERVOPACK. *2. The rated output is 2.4 kW if you combine the SGM7G-30A with the SGD7S-200A.

Direct Drive Servo	motor Model	Rated Torque	Instantaneous Max. Torque	SERVOPA	CK Model			
Direct Drive Servo		N∙m	N·m	SGD7S-DDD	SGD7W-DDDD			
	SGMCS-02B	2	6					
	SGMCS-05B	5	15					
	SGMCS-07B	7	21					
	SGMCS-04C	4	12					
	SGMCS-10C	10	30	2R	8A			
Small capacity, coreless (SGMCS)	SGMCS-14C	14	42					
(301003)	SGMCS-08D	8	24					
	SGMCS-17D	17	51					
	SGMCS-25D	25	75					
	SGMCS-16E	16	48	5R5A				
	SGMCS-35E	35	105					
	SGMCS-45M	45	135	7R6A				
	SGMCS-80M	80	240	120A				
Medium capacity, with core	SGMCS-80N	80	240	120A				
(SGMCS)	SGMCS-1AM	110	330	180A	_			
	SGMCS-1EN	150	450	2004				
	SGMCS-2ZN	200	600	200A				
	SGMCV-04B	4	12	00	0.4			
	SGMCV-10B	10	30	28	8A			
Small capacity, with core	SGMCV-14B	14	42	5R	5A			
(SGMCV)	SGMCV-08C	8	24	2R	8A			
	SGMCV-17C	17	51	5R5A				
	SGMCV-25C	25	75	7R	6A			

• Combination of Direct Drive Servomotors and SERVOPACKs

Σ -7 Series Combination

•Combination of Linear Servomotors and SERVOPACKs

Linear Servomot	tor Model	Rated Force	Max. Force N	SERVOPAC	SGD7W-	
	SGLGW-30A050C	12.5	40	R70A	1R6A	
	SGLGW-30A080C	25	80	ni un	moA	
	SGLGW-40A140C	47	140	R90A	1R6A	
	SGLGW-40A1400 SGLGW-40A253C	93	280	1R6	۲ ۸	
	SGLGW-40A255C SGLGW-40A365C	140	420	2R8		
SGLG Coreless model, with standard	SGLGW-40A305C SGLGW-60A140C	70	220	2R6 1R6		
magnetic way)	SGLGW-60A140C	140	440	2R8		
magnetic way)			-			
	SGLGW-60A365C	210	660	5R5	A	
	SGLGW-90A200C	325	1300	120A		
	SGLGW-90A370C	550	2200	180A	_	
	SGLGW-90A535C	750	3000	200A		
	SGLGW-40A140C	57	230	1R6		
SGLG	SGLGW-40A253C	114	460	2R8		
Coreless model, with high-force	SGLGW-40A365C	171	690	3R8A	5R5A	
magnetic way)	SGLGW-60A140C	85	360	1R6		
magnetie way	SGLGW-60A253C	170	720	3R8A	5R5A	
	SGLGW-60A365C	255	1080	7R6	A	
	SGLFW-20A090A	25	86			
	SGLFW-20A120A	40	125	1R6	A	
	SGLFW-35A120A	80	220			
	SGLFW-35A230A	160	440	3R8A	5R5A	
	SGLFW-50A200B	280	600	5R5	БА	
	SGLFW-50A380B					
	SGLFW-1ZA200B	- 560	1200	120A	_	
	SGLFW-1ZA380B	1120	2400	200A		
	SGLFW2-30A070A	45	135	2007		
SGLF	SGLFW2-30A120A	90	270	1R6	6A	
(Model with F-type iron core)	SOLI WZ SUATZUA	180	540	3R8A	_	
(Model with F-type from core)	SGLFW2-30A230A	170	500	2R8		
	SGLFW2-45A200A	280	840	5R5	A	
	SGLFW2-45A380A	560	1680	180A		
			1500	120A		
	SGLFW2-90A200A	560	1680			
	SGLFW2-90A380A	1120	3360	200A	-	
	SGLFW2-90A560A	1680	5040	330A		
	SGLFW2-1DA380A	1680	5040	200A		
	SGLFW2-1DA560A	2520	7560	330A		
	SGLTW-20A170A	130	380	3R8A	5R5A	
	SGLTW-20A320A	250	760	7R6	A	
	SGLTW-20A460A	380	1140	120A	_	
	SGLTW-35A170A	220	660			
	SGLTW-35A170H	300	600	5R5	A	
	SGLTW-35A320A	440	1320			
SGLT	SGLTW-35A320H	600	1200	120A		
(Model with T-type iron core)	SGLTW-35A460A	670	2000		-	
(model with r type lion cold)	SGLTW-40A400B	670	2600	180A		
				220.4	_	
	SGLTW-40A600B	1000	4000	330A		
	SGLTW-50A170H	450	900	5R5	NA	
	SGLTW-50A320H	900	1800	120A		
	SGLTW-80A400B	1300	5000	330A	-	
	SGLTW-80A600B	2000	7500	550A		
	SGLC-D16A085A	17	60	R70A		
	SGLC-D16A115A	25	90		1R6A	
	SGLC-D16A145A	34	120	R90A		
	SGLC-D20A100A	30	150	1R6	Δ	
	SGLC-D20A135A	45	225			
SGLC	SGLC-D20A170A	60	300	2R8	BA	
(Cylinder model)	SGLC-D25A125A	70	280	1R6	A	
	SGLC-D25A170A	105	420	2R8		
-	SGLC-D25A215A	140	560			
				5R5A 2R8A		
	SGLC-D32A165A	90	420	2R8	SA	
	SGLC-D32A165A SGLC-D32A225A	90 135	420 630	2R8 5R5		

Recommended Encoders

◆Incremental Linear Encoders											
		Linear		Linear Encoder	Resolution	Maximum	Support for	Application to	Application to		
Output Signal	Manufacturer	Encoder Type	Scale	Sensor Head	Interpolator (Serial Converter Unit)	Pitch µm	nm	Speed*3 m/s	Polarity Sensor Input	Linear Motors	Fully-closed Loop Control
				40	(JZDP-H003/-H006)	20	78.1	5	~	~	~
	Heidenhain	Exposed	LIDA	48	(JZDP-J003/-J006)	20	4.9	2	\checkmark	\checkmark	-
1 Vp-p Analog	Corporation		LIF48		(JZDP-H003/-H006)	4	15.6	1	~	\checkmark	\checkmark
Voltage*1					(JZDP-J003/-J006)		1.0	0.4	~	*5	-
renage	Renishaw plc*4	Exposed	RGS20	RGH22B	(JZDP-H005/-H008)	20	78.1	5	~	\checkmark	~
	nemisnaw pic				(JZDP-J005/-J008)		4.9	2	\checkmark	\checkmark	-
		Exposed	SL7⊡0	F	PL101-RY	800	97.7	5	_	\checkmark	\checkmark
Encoder for		Lyposed		PL101	MJ620-T13	000	51.1	5	\checkmark	\checkmark	-
Yaskawa's	Magnescale		SR75-🗆		_	80	9.8	3.33	_	\checkmark	\checkmark
Serial	Co., Ltd.	Sealed	SR75-🗆	□□□MF	_	80	78.1	3.33	_	\checkmark	\checkmark
Interface*2		Sealed	SR85-			80	9.8	3.33	_	\checkmark	~
			SR85-00	□□□MF	_	80	78.1	3.33	-	\checkmark	\checkmark

Absolute Linear Encoder

Output Signal	Manufacturer	Linear Encoder Type		Encoder	Resolution	Maximum Speed*3	Support for Polarity	Application	Application to Fully-closed		
Output Oighui	Wandlaotaror		Scale	Sensor Head	Interpolator (Serial Converter Unit)	Pitch μm	nm	m/s	Sensor Input	Linear Motors	Loop Control
	Magnescale Co., Ltd.		SR77- 🗆		_	80	9.8	3.33	-	\checkmark	\checkmark
		Sealed	SR77- 🗆]MF	_	80	78.1	3.33	-	\checkmark	\checkmark
			SR87-000LF		_	80	9.8	3.33	-	\checkmark	\checkmark
			SR87- 🗆]MF	_	80	78.1	3.33	-	\checkmark	\checkmark
Encoder for		Fundada	ST781A		_	256	500	5	-	\checkmark	\checkmark
Yaskawa' s			ST782A		_	256	500	5	-	\checkmark	\checkmark
Serial	Mitutoyo		ST7	83A	_	51.2	100	5	-	\checkmark	\checkmark
Interface*2	Corporation	Exposed	ST7	84A	-	51.2	100	5	-	~	\checkmark
			ST7	88A	_	51.2	100	5	-	~	\checkmark
			ST78	9A*6	-	25.6	50	5	-	~	\checkmark
	Heidenhain Corporation	Exposed	LIC410	0 series	EIB3391Y	_	5	5	-	~	~

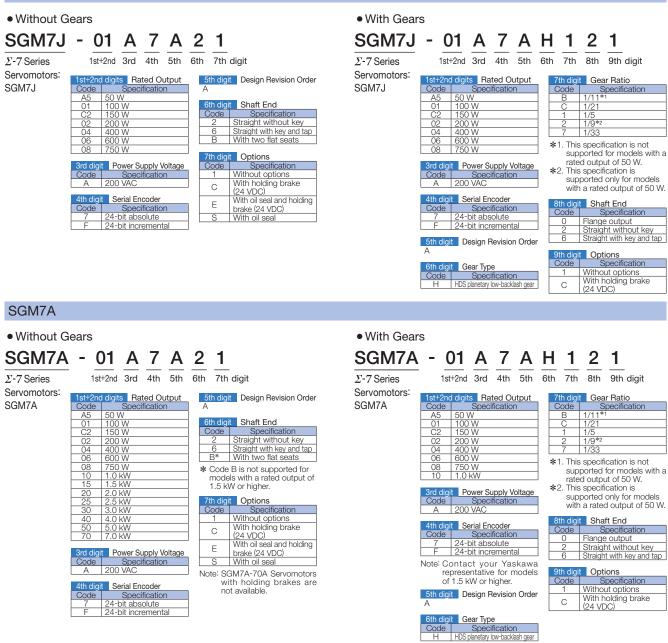
Absolute Rotary Encoder

Output Signal	Manufacturer	Linear Encoder Type		Мос	Resolution	Maximum Speed*3	Application to	Application to Fully-closed
Output Signal			Scale	Sensor Head	Interpolator (Serial Converter Unit)	Bits	min ⁻¹	Linear Motors
Encoder for Yaskawa' s	Magnescale	Sealed		RU77-40	20	2000	_	\checkmark
Serial Interface	Co., Ltd.	Sealed		RU77-409	22	2000	-	~


*1. You must also use a Yaskawa Serial Converter Unit. The output signal will be multiplied by 8 bits (256 divisions) or 12 bits (4,096 divisions) in the Serial Converter Unit.

*2. The multiplier (number of divisions) depends on the Linear Encoder. Also, you must write the motor constant file to the Linear Encoder in advance. *3. The maximum speeds given in the above table are the maximum applicable speeds of the encoders when combined with a Yaskawa

SERVOPACK. The actual speed will be restricted by either the maximum speed of the Linear Servomotor or the maximum speed of the Linear Encoder (given above).

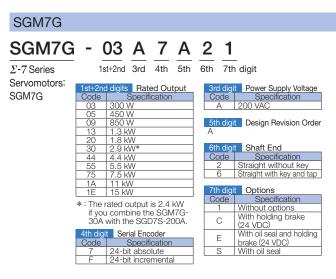

*4. If you use the origin signals with a Linear Encoder from Renishaw plc, the origin may sometimes be falsely detected. If that occurs, use the BID/ DIR signal to output the origin signal only in one direction.

*5. Contact your Yaskawa representative.
*6. Contact Mitutoyo Corporation for details on the Linear Encoders.
Note: Confirm detailed specifications, such as the tolerances, dimensions, and operating environment, with the manufacturer of the Encoder before you use it.

Rotary Servomotors

SGM7J

SGM7P


Without Gears

SGM7P	- 0	1 A	7	Α	2	1	
Σ -7 Series	1st+	2nd 3rd	4th	5th	6th	7th	digit
Servomotors:	1st+2nd	digits Ra	ted O	utput	5	th digi	t Design Revision Order
SGM7P	Code	Spec	ificatio	n		Code	Specification
	01	100 W				А	IP65
		200 W				E	IP67
		400 W					
	08	750 W					Shaft End
	15	1.5 kW			(Code	Specification
		_				2	Straight without key
	3rd digit	Power S	upply V	oltage	. L	6	Straight with key and tap
	Code		ificatio	n			
	A	200 VAC					t Options
		_				Code	Specification
	4th digit	Serial Er	lcoder			1	Without options
	Code		ificatio	n		С	With holding brake
	7	24-bit abs	solute			0	(24 VDC)
	F	24-bit inci	rement	al]	Е	With oil seal and holding brake (24 VDC)
						S	With oil seal

• With Gears

• with Gear	S									
SGM7P	- (01	Α	7	Α	Н	В	0	1	
Σ -7 Series Servomotors: SGM7P		100 \ 200 \ 400 \ 750 \ 1.5 \ it Pov	Rat Specif W W W W W W			7t C	7th h digit ode H h digit ode B C 1 7	S HDS plan Gea	Type pecific etary low r Ratio	/-backlash gear
	A 4th dig Code 7 F 5th dig Code A	digit Serial Encoder de Specification 24-bit absolute 24-bit incremental digit Design Revision Order de Specification					h digit ode 0 2 6 h digit ode 1 C	S Flange Straigh Straigh Opti S Withou	outpo nt with t with l ons pecific ut opti olding	cation ut nout key key and tap cation

Rotary Servomotors

Direct Drive Servomotors

- (02 B	3	С	1	1			
				6th	7th di	git		
			ıt					
					n (
					_			
10	10 N·m	30	1 30 1	NºIII		22	200 N	
3rd diai	t Servomotor O	outer Diame	eter	4th d	liait S	erial Er	ncoder	
Code	Specific	ation				Spec	ification	า
В	135-mm dia			2	20-	bit sin	gle-turr	1
				3				
							rement	al
					enc	coder		
N	360-mm dia							
5th diai	t Design Re	vision (Order					
	Debigirrie			ecificat	ion			
A	Model with s	servomo				code N	1 or N	
В								
С	Model with s	servomo	tor ou	ter dia	meter o	code E	8, C, or	D
6th dig	it Flange				\checkmark	: Appli	cable n	nodels.
Code		ng						d Digit) N
	Non-load sic	le.					-	_
1			_	-	-	-	~	\checkmark
3	Non-load sic	le	-	-	-	-	~	\checkmark
	Non-load sic		~	~	~	~	_	_
4	(with cable o	n side)		×	*		_	_
		n side)	~	~			_	
4 7th digi Code		n side)		ecificat			_	
	1st+2nd • Small-(Code 02 04 05 07 08 10 3rd digi Code B C D E M N 5th digi Code 6th dig Code 1	1st+2nd 3rd 1st+2nd digits Rate • Small-capacity Series Code Specification 02 2 N·m 04 4 N·m 05 5 N·m 07 7 N·m 08 8 N·m 10 10 N·m 3rd digit Sevemetor C Code Specification 0 10 N·m 3rd digit Sevemetor C Code Specification 0 10 N·m 3rd digit Sevemetor C Code Specification 0 10 N·m 3rd digit Sevemetor C Code Specification 0 10 N·m 3rd digit Design Re Code Model with s C Model with s C Model with s Chodel with s S 6th digit Flange Code Monole with s	Ist+2nd 3rd 4th 5 1st+2nd digits Rated Output • Small-capacity Series Code Specification Code 02 2 N·m 14 04 4 N·m 16 05 5 N·m 17 07 7 N·m 25 08 8 N·m 35 10 10 N·m 3rd digit Sevemeter Outer Diam Code Specification B 135-mm dia. C 175-mm dia. D 230-mm dia. M 280-mm dia. N 360-mm dia. N 360-mm dia. Sth digit Design Revision O Code A A Model with servomo C Model with servomo C Gode Mounting Code Mounting 1 Non-load side	1st+2nd 3rd 4th 5th 1st+2nd digits Rated Output • Small-capacity Series Code Specification Code Specification 02 2 N·m 14 14 04 4 N·m 16 161 05 5 N·m 17 17 07 7 N·m 25 25 I 08 8 N·m 35 35 I 10 10 N·m 35 35 I 01 10 N·m 36 35 I 02 230-mm dia.	1st+2nd 3rd 4th 5th 6th 1st+2nd digits Rated Output • Small-capacity Series • Code Specification Code Specification Code Specification O2 2 N·m 14 14 N·m 04 4 N·m 16 16 N·m O5 5 N·m 17 17 N·m 07 7 N·m 25 25 N·m 07 7 N·m 25 25 N·m 10 10 N·m 0 3 0 0 3rd digit Servomotor Outer Diameter Code Specification 3 0 <td>StH-2nd digits Rated Output • Small-capacity Series • Code Specification Code Specification 02 2 N·m 14 14 N·m 04 4 N·m 16 16 N·m 05 5 N·m 17 17 N·m 07 7 N·m 25 25 N·m 08 8 N·m 35 35 N·m 10 10 N·m 37 10 10 N·m 3rd digit Servomotor Outer Diameter Code 3 20- Code Specification 6 3 20- abs D 230-mm dia. N 380-mm dia. D 20- end N 380-mm dia. N 380-mm dia. Sth digit D 20- N 380-mm dia. Sth digit D Secontro outer diameter of Code Specification A Model with servomotor outer diameter of C Model with servomotor outer diameter of C Model with servomotor outer diameter of C Model with servomotor outer dia</td> <td>1st+2nd 3rd 4th 5th 6th 7th digit 1st+2nd Gigits Rated Output • Medium • Small-capacity Series • Medium Code Specification Code Specification 02 2 N·m 14 14 N·m 6 02 2 N·m 14 14 N·m 80 05 5 N·m 17 17 N·m 80 05 5 N·m 17 17 N·m 14 07 7 N·m 25 25 N·m 14 10 10 N·m 35 35 N·m 12 10 10 N·m 3 3 20-bit sin 3 20-bit modia. 1 20-bit sin 17 17.5-mm dia. 1 20-bit sin 18 1036-mm dia. 1 20-bit sin 14 14 14 14 14 10 230-mm dia. 1 20-bit sin 17 280-mm dia.</td> <td>1st+2nd 3rd 4th 5th 6th 7th digit 1st+2nd digits Rated Output • Medium-capacit • Medium-capacit • Small-capacity Series • Medium-capacit • Medium-capacit Code Specification • Code Specification 02 2 N·m 14 14 N·m • Medium-capacit 04 4 N·m 16 16 N·m 80 80 N·1 05 5 N·m 17 17 N·m 14 14 N·m 05 5 N·m 17 17 N·m 14 14 N·m 80 80 N·1 05 5 N·m 17 17 N·m 14 14 N·1 16 10 10 N·1 07 7 N·m 25 25 N·m 12 20 N 12 20 N 01 10 N·m 35 35 N·m 12 20 N 12 20 N 3rd digit Servemotor Outer Diameter Code Specification 3 35 N = 000 N 12 20-bit increment 10 20-bit increment</td>	StH-2nd digits Rated Output • Small-capacity Series • Code Specification Code Specification 02 2 N·m 14 14 N·m 04 4 N·m 16 16 N·m 05 5 N·m 17 17 N·m 07 7 N·m 25 25 N·m 08 8 N·m 35 35 N·m 10 10 N·m 37 10 10 N·m 3rd digit Servomotor Outer Diameter Code 3 20- Code Specification 6 3 20- abs D 230-mm dia. N 380-mm dia. D 20- end N 380-mm dia. N 380-mm dia. Sth digit D 20- N 380-mm dia. Sth digit D Secontro outer diameter of Code Specification A Model with servomotor outer diameter of C Model with servomotor outer diameter of C Model with servomotor outer diameter of C Model with servomotor outer dia	1st+2nd 3rd 4th 5th 6th 7th digit 1st+2nd Gigits Rated Output • Medium • Small-capacity Series • Medium Code Specification Code Specification 02 2 N·m 14 14 N·m 6 02 2 N·m 14 14 N·m 80 05 5 N·m 17 17 N·m 80 05 5 N·m 17 17 N·m 14 07 7 N·m 25 25 N·m 14 10 10 N·m 35 35 N·m 12 10 10 N·m 3 3 20-bit sin 3 20-bit modia. 1 20-bit sin 17 17.5-mm dia. 1 20-bit sin 18 1036-mm dia. 1 20-bit sin 14 14 14 14 14 10 230-mm dia. 1 20-bit sin 17 280-mm dia.	1st+2nd 3rd 4th 5th 6th 7th digit 1st+2nd digits Rated Output • Medium-capacit • Medium-capacit • Small-capacity Series • Medium-capacit • Medium-capacit Code Specification • Code Specification 02 2 N·m 14 14 N·m • Medium-capacit 04 4 N·m 16 16 N·m 80 80 N·1 05 5 N·m 17 17 N·m 14 14 N·m 05 5 N·m 17 17 N·m 14 14 N·m 80 80 N·1 05 5 N·m 17 17 N·m 14 14 N·1 16 10 10 N·1 07 7 N·m 25 25 N·m 12 20 N 12 20 N 01 10 N·m 35 35 N·m 12 20 N 12 20 N 3rd digit Servemotor Outer Diameter Code Specification 3 35 N = 000 N 12 20-bit increment 10 20-bit increment

Note: Direct Drive Servomotors are not available with holding brakes.

SGMCV								
SGMCV	- (04	В	Е	Α	1	1	
Direct Drive	19	t+2nd	3rd	4th	5th	6th	7t	h digit
Servomotors: SGMCV	Code		pecifi	ed Out ication	put	5 A	th digi	t Design Revision Order
	04 08 10	4 N·m 8 N·m 10 N·i					th digi ode	t Flange Specification
	14 17	14 N·i 17 N·i	n		_	F	1	Non-load side Non-load side
	25	25 N·I	n				4	(with cable on side)
	3rd dig Code			Outer Dia	ameter		th digi ode	t Options Specification
	B	135-n	nm di	a.			1	Without options High machine precision
	4th dig	175-n		a. coder			5	(runout at end of shaft and runout of shaft
	Code			ication				surface: 0.01 mm)
	E		ute en	ncoder				
	I	22-bit absolu		iturn icoder				

Note: Direct Drive Servomotors are not available with holding brakes.

Linear Servomotors

SGLG (Coreless Models)

Moving Co	oil		Magnetic Way
SGL	GW-30A05	50 C P 🗌	SGLGM-30108A 🗌
Linear <i>∑</i> Series Linear	1st digit Servomotor Type 5 Code Specification 0	th+8th 9th 10th 11th digit <u>Sth digit</u> Power Supply Voltage Code Specification	Linear ∑ 1st 2nd 3rd+4th 5th+6th+7th 8th 9th digit Series Linear Code Specification Specification
Servomotors	Code Specification W Moving Coil 3rd+4th digits Magnet Height Code Specification 30 30 mm 40 40 mm 60 60 mm	A 200 VAC th-7th+8th digits Length of Moving Coil Code Specification 050 50 mm 140 140 mm 200 199 mm 253 252.5 mm 365 365 mm 370 367 mm 535 535 mm	G Coreless model 090 90 mm 2nd digit Moving Coil/Magnetic Way 108 mm 108 mm 2nd digit Moving Coil/Magnetic Way 216 216 mm 3rd+4th digits Magnetic Way 360 360 mm 30 30 mm 405 405 mm 40 40 mm 60 60 mm 90 86 mm 90 egin Revision Order
	A 10th digit Sensor Specification and Specifications Code Polarity Sensor Cooling Method None None Self-cooled C None Air-cooled H Yes Air-cooled P Yes Self-cooled	9th digit Design Revision Order x, B ··· Cooling Method Applicable Models All models SGLGW-40A, -60A, -90A All models	9th digit Options Code Specification Applicable Models None Standard-force All models -M High-force SGLGM-40, -60 * The SGLGM-40 and SGLGM-60 also have a CT code. ·C = Without mounting holes on the bottom ·CT = With mounting holes on the bottom
	11th digit Connector for Servomoto Code Specification None Connector from Tyco Electronics Japan G.K. Connector from D Connector from Interconnectron GmbH	or Main Circuit Cable Applicable Models All models SGLGW-30A, -40A, -60A	

Note: This information is provided to explain model numbers. It is not meant to imply that models are available for all combinations of codes.

SGLFW (Models with F-type Iron Cores)

Moving C	coil	Magnetic Way
SGL Linear Series Linear Servomotors	F W - 20 A 0900 A P	S.G.L. F.M. - 20 324 A □ Linear ∑ Series 1st 2nd 3rd+4th 5th+6th+7th 8th 9th digit Series Ist 2nd 3rd+4th 5th+6th+7th 8th 9th digit Series Ist 2nd 3rd+4th 5th+6th+7th 8th 9th digit Series Ist 2nd Series Series<
	Code Specification P With polarity sensor None Without polarity sensor	9th digit Options Code Specification None Without options C With magnet cover
	I1th digit Connector for Servomotor Main Circuit Cable Code Specification Applicable Models None Connector from Tyco Electronics Japan G.K. All models D Connector from Interconnectron GmbH SGLFW-35, -50, -1Z□200B	

Note: This information is provided to explain model numbers. It is not meant to imply that models are available for all combinations of codes.

Linear Servomotors

SGLFW2	SGLFW2 (Models with F-type Iron Cores)					
• Moving C SGL	^{Coil} F W2 - 30 A 070 A T □	• Magnetic Way S G L F M2 - 30 270 A				
Linear <i>Σ</i> Series Linear Servomotors	1st 2nd 3rd+4th 5th 6th+7th+8th 9th 10th 11th digit 1st digit Severation 5th 6th+7th+8th 9th 10th 11th digit 1st digit Severation 5th 6th+7th+8th 9th 10th 11th digit 1st digit Severation 5th Gith Severation A 200 VAC 2nd digit Moving Coil Severation A 200 VAC Severation Severation	Linear £ 1st 2nd 3rd+4th 5th+6th+7th 8th digit Series Linear Servomotors 1st digit Servomotor Type Code Specification F 5th+6th+7th digits Length of Magnetic Way 2nd digit Moving Coil/Magnetic Way 270 270 mm 306 306 mm M Magnetic Way 5th-6th+7th digits Length of Magnetic Way 3rd+4th digits Magnet Height 3rd+4th digits Magnet Height 30 30 mm 45 45 mm 90 90 mm 1D 135 mm Sth digit Sth digit				
	10th digit Sensor Specification Code Specification T Without polarity sensor, with thermal protector S With polarity sensor and thermal protector 11th digit Cooling Method Code Specification None Self-cooled L Water-cooled*					

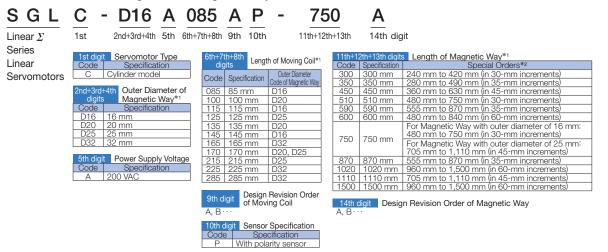
st Contact your Yaskawa representative for information on water-cooled models.

Note: This information is provided to explain model numbers. It is not meant to imply that models are available for all combinations of codes.

SGLT (Models with T-type Iron Cores)

 Moving C 	oil		Magnetic Way
SGL	T W - 20 A	170 A P 🗌	SGL TM - 20324 A 🗌
Linear Σ Series Linear Servomotors	1st 2nd 3rd+4th 5th 1st digit Servomotor Type Code Specification T With T-type iron core With T-type iron core Code Specification 2nd digit Moving Coil/Magnetic W Code Specification W Moving Coil 3rd+4th digits Magnet Heigh Code Specification 20 20 mm 35 36 mm 40 40 mm 50 51 mm 80 76.5 mm <td< td=""><td>digits Length of Moving Coll Code Specification 170 170 mm</td><td>Linear £ 1st 2nd 3rd+4th 5th+6th+7th 8th 9th digit Series 1st digit Servomotor Type Servomotor Type</td></td<>	digits Length of Moving Coll Code Specification 170 170 mm	Linear £ 1st 2nd 3rd+4th 5th+6th+7th 8th 9th digit Series 1st digit Servomotor Type Servomotor Type
	10th digit Sensor Specifications Code Specifications Polarity Sensor Cooling None None Vater-H* Yes P Yes Specifications Self-cc 11th digit Connector for Ser Code Specification Code Specification Code Specification None Ms connector from Tyco Electronics Japan G.I None None Ms connector Loose lead wires with no connector	H: High-efficiency model on and Cooling Method Method Applicable Models socled All models socled All models socled All models womotor Main Circuit Cable Applicable Models SGLTW-200, SGLTW-200, SGLTW-200, -80A - B B, -80A -	9th digit Options Code Specification Applicable Models None Without options - C With magnet cover All models Y With base and magnet cover SGLTM-20, -35*, -40, -80 * The SGLTM-35 H (high-efficiency models) do not support this specification.

Contact your Yaskawa representative for the characteristics, dimensions, and other details on Servomotors with these specifications.


Note: This information is provided to explain model numbers. It is not meant to imply that models are available for all combinations of codes.

Linear Servomotors

SGLC (Cylinder Models)

• Combination of Moving Coil and Magnetic Way

*1. There are restrictions in the allowable combinations. Refer to List of Models (page 195) for details. This code contains four digits if the length of the Magnetic Way is 1,000 or longer. *2. Contact your Yaskawa representative when you make an order.

Note: 1. Order the Moving Coil and Magnetic Way as a set. Contact your Yaskawa representative before purchasing a Moving Coil and Magnetic Way separately. 2. This information is provided to explain model numbers. It is not meant to imply that models are available for all combinations of codes.

Moving Coil

SGL	C W - D16 A	085 A P	SGL	C M - D16	750 A
Linear Σ	1st 2nd 3rd+4th+5th 6th	7th+8th+9th 10th 11th digit	Linear Σ	1st 2nd 3rd+4th+5th 6th	h+7th+8th 9th digit
Series Linear Servomotors	1st digit Servomotor Type Code Specification C Cylinder model 2nd digit Moving Coil/Magnetic Way Code Specification W Moving Coil 3rd+4th+5th Outer Diameter of Magnetic Way (Same as above combinations.)	6th digit Power Supply Voltage (Same as above combinations.) 7th+8th+9th digits Length of Moving Coil (Same as above combinations.) 10th digit Design Revision Order A, B ··· 11th digit Sensor Specification (Same as above combinations.)	Series Linear Servomotors	1st digit Servomotor Type Code Specification C Cylinder model 2nd digit Moving Coll/Magnetic Way Code Specification M Magnetic Way	3rd+4th+5th Outer Diameter of digits Magnetic Way (Same as above combinations.) 6th+7th+8th digits Length of Magnetic Way (Same as above combinations.) 9th digit 9th digit Design Revision Order A, B · · · Provide the second

Magnetic Way

Note: 1. Order the Moving Coil and Magnetic Way as a set. Contact your Yaskawa representative before purchasing a Moving Coil and Magnetic Way separately. 2. This information is provided to explain model numbers. It is not meant to imply that models are available for all combinations of codes.

SERVOPACKs

Σ -7S Model - R70 A 20 A SGD7S 001 Σ -7 Series 1st+2nd+3rd 4th 5th+6th 7th 8th+9th+10th digit Σ -7S Models d+3rd Maximum Applicable Motor Capacity

Voltage	Code	Specification
	R70*1	0.05 kW
	R90*1	0.1 kW
	1R6*1	0.2 kW
	2R8*1	0.4 kW
	3R8*1	0.5 kW
Three-	5R5*1	0.75 kW
	7R6	1.0 kW
phase, 200	120	1.5 kW
VAC	180	2.0 kW
VAC	200	3.0 kW
	330	5.0 kW
	470	6.0 kW
	550	7.5 kW
	590	11 kW
	780	15 kW

4th digi	Voltage			
Code	Specification			
A	200 VÁC			
5th+6th	digits Interface*2			
Code	Specification			
00	Analog voltage/pulse train referance			
10	MECHATROLINK-I			
	communications reference			
20	MECHATROLINK-III			
20	communications reference			

7th digit Design Revision Order

0

gits Hardware Options Specification

ouitanit	naruware Options Specification	
Code	Specification	Applicable Models
None	Without options	All models
001	Rack-mounted	SGD7S-R70A to -200A
002	Varnished	3GD73-R70A 10-200A

*1. You can use these models with either a single-phase or three-phase input.
 *2. The same SERVOPACKs are used for both Rotary Servomotors and Linear Servomotors.

\varSigma -7W Model SGD7W 1R6 A 20 A 001 -

 Σ -7 Series Σ -7W Models 1st+2nd+3rd 4th 5th+6th 7th 8th+9th+10th digit

 1st+2nd+3rd
 Maximum Applicable

 digits
 Motor Capacity per Axis

 Voltage
 Code
 Specification

 Three
 186*1
 0.2 kW

 phase,
 2R8*1
 0.4 kW

 200
 5R5*1
 0.75 kW

 VAC
 7R6
 1.0 kW
 4th digitVoltageCodeSpecificationA200 VAC 5th+6th digits Interface*2 MECHATROLINK-III communications reference Code 20

7th digit Design Revision Order A

8th+9th+	10th digits Hardware Options Specification	
Code	Specification	Applicable Models
None	Without options	
001	Rack-mounted	All models
002	Varnished	

* 1. You can use these models with either a single-phase or three-phase input.
 * 2. The same SERVOPACKs are used for both Rotary Servomotors and Linear Servomotors.

Related Documents

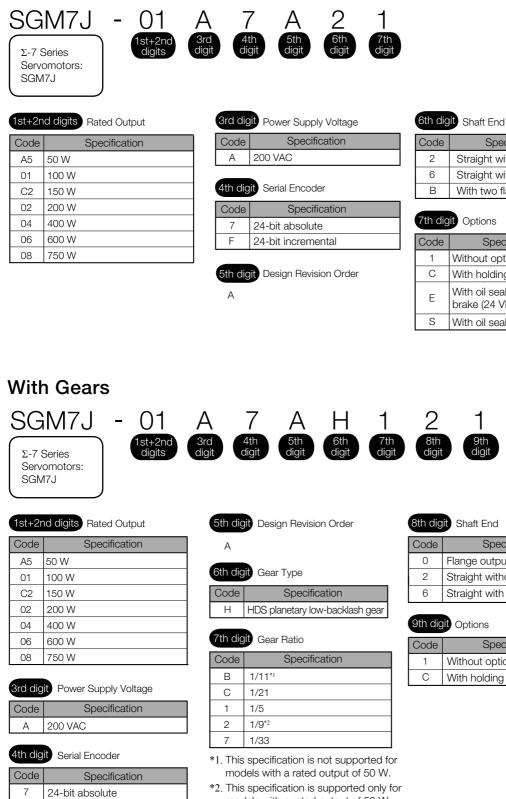
The documents that are related to the MP3300 Machine Controllers and Σ -7 series AC Servo Drives are shown in the following table. Refer to these documents as required.

Catalog Name (Catalog No.)	Document Name (Document No.)	Description of Document
General Catalog		
Machine Controller and AC Servo Drive Solutions Catalog (KAEP S800001 22)	-	-
MP3300 Catalog	MP3000-Series Manual	Describes the functions, specifications, operating methods, maintenance,
Machine Controller MP3300 (KAEP C880725 03)	MP3300 Product Manual (SIEP C880725 21)	inspections, and troubleshooting of the MP3000-Series MP3300 Machine Controllers.
Σ -7 -Series Catalog	Σ -7S -Series Product Manual	
AC Servo Drives Σ -7Series (KAEP S800001 23)	<i>Σ</i> -7S SERVOPACK with MECHATROLINK-III Communications References Product Manual (SIEP S800001 28)	
	∑-7S SERVOPACK with MECHATROLINK-II Communications References Product Manual (SIEP S800001 27)	Provide detailed information on selecting Σ -7-Series SERVOPACKs and information on installing,
	Σ -7S SERVOPACK with Analog Voltage/Pulse Train References Product Manual (SIEP S800001 26)	connecting, setting, performing trial operation for, tuning, and monitoring the Servo Drives.
	∑-7W SERVOPACK with MECHATROLINK-III Communications References Product Manual (SIEP S800001 29)	
	\varSigma -7 -Series Servomotor Product Manual	
	Rotary Servomotor Product Manual (SIEP S800001 36)	
	Linear Servomotor Product Manual (SIEP S800001 37)	Provide detailed information on selecting, installing, and connecting the Σ -7-Series Servomotors.
	Direct Drive Servomotor Product Manual (SIEP S800001 38)	
	Others	
	Peripheral Device Selection Manual (SIEP S800001 32)	Describes the peripheral devices for a Σ -7-Series Servo System.
	MECHATROLINK-III Communications Standard Servo Profile Command Manual (SIEP S800001 31)	Provides detailed information on the MECHATROLINK-III communications standard servo profile commands that are used for a Σ -7- Series Servo System.
	MECHATROLINK-II Communications Command Manual (SIEP S800001 30)	Provides detailed information on the MECHATROLINK-II communications commands that are used for a Σ -7-Series Servo System.
	Digital Operator Operating Manual (SIEP S800001 33)	Describes the operating procedures for a Digital Operator for a \varSigma -7-Series Servo System.
	Engineering Tool SigmaWin+ Online Manual <i>Σ</i> -7 Component (SIEP S800001 48)	Provides detailed operating procedures for the SigmaWin+ Engineering Tool for a Σ -7-Series Servo System.

CONTENTS

Rotary Servomotors	
SGM7J	4
SGM7A	23
SGM7P	52
SGM7G	71
Direct Drive Servomotors	
SGMCS	90
SGMCV	111
Linear Servomotors	
SGLG (Coreless Models)	122
SGLF (Models with F-type Iron Cores)	146
SGLT (Models with T-type Iron Cores)	189
SGLC (Cylinder Models)	213
Specifications When Connecting More Than One Moving Coil	229
SERVOPACKs	
\varSigma -7 S Single-axis Analog Voltage/Pulse Train Reference SERVOPACKs	232
\varSigma -7S Single-axis MECHATROLINK-II Communications Reference SERVOPACKs	240
\varSigma -7S Single-axis MECHATROLINK-III Communications Reference SERVOPACKs	247
\varSigma -7 W Two-axis MECHATROLINK-III Communications Reference SERVOPACKs	254
SERVOPACK External Dimensions	260
Option Modules	
Feedback Option Modules	270
Cables and Peripheral Devices	
Cables for SGM7J and SGM7A Rotary Servomotors	276
Cables for SGM7P Rotary Servomotors	284
Cables for SGM7G Rotary Servomotors	288
Cables for Direct Drive Servomotors	295
Cables for Linear Servomotors	300
Serial Converter Units	305
Recommended Linear Encoders	306
Cables for SERVOPACKs	316
Peripheral Devices	320
Appendices	
Capacity Selection for Servomotors	340
Capacity Selection for Regenerative Resistors	348
International Standards	364
Warranty	365

Rotary Servomotors
Direct Drive Servomotors
Linear Servomotors
SERVOPACKs
Option Modules
Cables and Peripheral Devices
Appendices


Rotary Servomotors

SGM7J	 . 4
SGM7A	 23
SGM7P	 52
SGM7G	 71

SGM7J

Model Designations

Without Gears

models with a rated output of 50 W.

our aig	onan End
Code	Specification
0	Flange output
2	Straight without key
0	Other in the state of the state

Specification

Straight with key and tap

Specification

With holding brake (24 VDC) With oil seal and holding

Straight without key

With two flat seats

Without options

brake (24 VDC)

With oil seal

9th diai

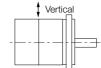
6	Straight with key and tap

9th digit Options

Code	Specification
1	Without options
С	With holding brake (24 VDC)

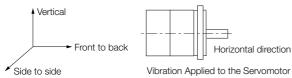
F

24-bit incremental


Specifications and Ratings

Specifications

	Voltage	200 V								
١	Nodel SGM7J-	A5A 01A C2A 02A 04A 06A 08A								
Time Rating		Continuous								
Thermal Class	3	В								
Insulation Res	istance			500 V	DC, 10 M	Ω min.				
Withstand Vol	tage			1,500 \	VAC for 1	minute				
Excitation				Perm	nanent ma	agnet				
Mounting				Flai	nge-mour	nted				
Drive Method					Direct driv	-				
Rotation Direc	ction	Counterclo	ockwise (CC	CW) for forwa	ard referenc	e when viev	ved from the	e load side		
Vibration Clas	s*1				V15					
	Surrounding Air Temperature	0°C to 40	D°C (With d	lerating, usa	age is poss	ible betwee	en 40°C and	d 60°C.) ^{*4}		
Environmen- tal Condi- tions	Surrounding Air Humidity	20% to 80% relative humidity (with no condensation)								
	Installation Site	 Must be indoors and free of corrosive and explosive gases. Must be well-ventilated and free of dust and moisture. Must facilitate inspection and cleaning. Must have an altitude of 1,000 m or less. (With derating, usage is possible between 1,000 m and 2,000 m.)*5 Must be free of strong magnetic fields. 								
	Storage Environment	Store the Servomotor in the following environment if you store it with the power cable disconnecte Storage Temperature: -20°C to 60°C (with no freezing) Storage Humidity: 20% to 80% relative humidity (with no condensation								
Shock	Impact Acceleration Rate at Flange	490 m/s ²								
Resistance*2	Number of Impacts	2 times								
Vibration Resistance ^{*3}	Vibration Acceleration Rate at Flange	49 m/s ²								
	SGD7S-	R70A	R90A	1R	6A	2R8A	5F	5A		
Applicable SERVO- PACKs	SGD7W-	1R6A* ⁶ ,	2R8A*6	1R6A,	2R8A ^{*6}	2R8A 5R5A ^{*6} 7R6A ^{*6}	5R5A,	7R6A		


*1. A vibration class of V15 indicates a vibration amplitude of 15 µm maximum on the Servomotor without a load at the rated motor speed.

*2. The shock resistance for shock in the vertical direction when the Servomotor is mounted with the shaft in a horizontal position is given in the above table.

Shock Applied to the Servomotor

*3. The vertical, side-to-side, and front-to-back vibration resistance for vibration in three directions when the Servomotor is mounted with the shaft in a horizontal position is given in the above table. The strength of the vibration that the Servomotor can withstand depends on the application. Always check the vibration acceleration rate that is applied to the Servomotor with the actual equipment.

*4. If the surrounding air temperature will exceed 40°C, refer to the following section.

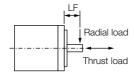
- 3 Applications Where the Surrounding Air Temperature of the Servomotor Exceeds 40 °C (page 13)
- *5. If the altitude will exceed 1,000 m, refer to the following section.
- Applications Where the Altitude of the Servomotor Exceeds 1,000 m (page 13)
- *6. If you use the Servomotor together with a Σ-7W SERVOPACK, the control gain may not increase as much as with a Σ-7S SERVOPACK and other performances may be lower than those achieved with a Σ-7S SERVOPACK.

Ratings of Servomotors without Gears

Voltage				200 V							
Model SGM7J-				01A	C2A	02A	04A	06A	08A		
Rated Output ^{*1} W			50	100	150	200	400	600	750		
Rated Torque ^{*1, *}	2	N∙m	0.159	0.318	0.477	0.637	1.27	1.91	2.39		
Instantaneous M	aximum Torque ^{*1}	N∙m	0.557	1.11	1.67	2.23	4.46	6.69	8.36		
Rated Current*1		Arms	0.55	0.85	1.6	1.6	2.5	4.2	4.4		
Instantaneous M	aximum Current ^{*1}	Arms	2.0	3.1	5.7	5.8	9.3	15.3	16.9		
Rated Motor Spe	eed ^{*1}	min⁻¹				3000			I		
Maximum Motor	Speed ^{*1}	min⁻¹				6000					
Torque Constant		N•m/Arms	0.316	0.413	0.321	0.444	0.544	0.493	0.584		
Motor Moment c	×10 ⁻⁴ kg·m ²	0.0395 (0.0475)	0.0659 (0.0739)	0.0915 (0.0995)	0.263 (0.333)	0.486 (0.556)	0.800 (0.870)	1.59 (1.77)			
Rated Power Rate ^{*1}		kW/s	6.40 (5.32)	15.3 (13.6)	24.8 (22.8)	15.4 (12.1)	33.1 (29.0)	45.6 (41.9)	35.9 (32.2)		
Rated Angular A	Rated Angular Acceleration Rate ^{*1}			48200 (43000)	52100 (47900)	24200 (19100)	26100 (22800)	23800 (21900)	15000 (13500)		
Derating Rate for Sen	vomotor with Oil Seal	%	80 90				95				
Heat Sink Size		mm	200 × 200 × 6 250 × 250 × 6								
Protective Struct	ure ^{*3}		Totally enclosed, self-cooled, IP67								
	Rated Voltage	V	24 VDC±10%								
	Capacity	W	5.5		6		6.5				
	Holding Torque	N∙m	0.159	0.318	0.477	0.637	1.27	1.91	2.39		
Holding Brake	Coil Resistance	Ω (at 20°C)	104.8±10%			96±10%		88.6±10%			
Specifications ^{*4}	Rated Current	A (at 20°C)	0.23			0.25		0.27			
	Time Required to Release Brake	ms	60 80						0		
	Time Required to Brake	ms				100					
Allowable Load Moment of Inertia (Motor Moment of Inertia Ratio)		1	15 10 times times 20			20	12 times				
With External Regenerative Re and Dynamic Brake Resistor			35 times				times	15 times			
LF		mm		20			25		35		
Allowable Shaft Loads ^{*5}	Allowable Radial Load	Ν	78			245			392		
LUAUS	Allowable Thrust Load	st Load N		54			74				

Note: The values in parentheses are for Servomotors with Holding Brakes.

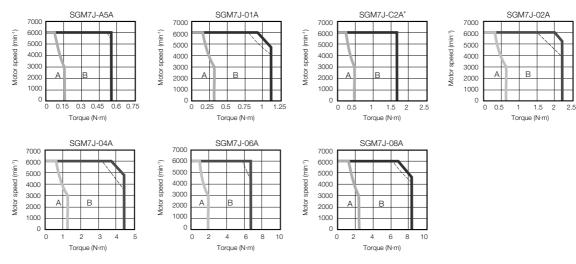
*1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. The values for other items are at 20°C. These are typical values.


*2. The rated torques are the continuous allowable torque values at a surrounding air temperature of 40°C with an aluminum heat sink of the dimensions given in the table.

*3. This does not apply to the shaft opening. Protective structure specifications apply only when the special cable is used.

*4. Observe the following precautions if you use a Servomotor with a Holding Brake.

- The holding brake cannot be used to stop the Servomotor.
- The time required to release the brake and the time required to brake depend on which discharge circuit is used. Confirm that the operation delay time is appropriate for the actual equipment.
- The 24-VDC power supply is not provided by Yaskawa.


*5. The allowable shaft loads are illustrated in the following figure. Design the mechanical system so that the thrust and radial loads applied to the Servomotor shaft end during operation do not exceed the values given in the table.

Torque-Motor Speed Characteristics

A : Continuous duty zoneB : Intermittent duty zone

(solid lines): With three-phase 200-V or single-phase 230-V input (dotted lines): With single-phase 200-V input

* The characteristics are the same for three-phase 200 V and single-phase 200 V.

- Note: 1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. These are typical values.
 - 2. The characteristics in the intermittent duty zone depend on the power supply voltage.
 - 3. If the effective torque is within the allowable range for the rated torque, the Servomotor can be used within the intermittent duty zone.
 - 4. If you use a Servomotor Main Circuit Cable that exceeds 20 m, the intermittent duty zone in the torquemotor speed characteristics will become smaller because the voltage drop increases.

Ratings of Servomotors with Gears

	Gear Mechanism Protective Structure							Lost I	Lost Motion [arc-min]								
All Models	Planetary dear mechanism						sed, self-cooled, IP55 for shaft opening) 3 max.										
	Servomotor Gea								ar Output								
Servomotor Model SGM7J-	Rated Output [W]	Rated Motor Speed [min ⁻¹]	Maxi- mum Motor Speed [min ⁻¹]	Rat Toro [N·	que	Instanta- neous Maxi- mum Torque [N·m]	Gear Ratio	Rated Torque/ Efficiency*1 [N·m/%]	Instanta- neous Maxi- mum Torque [N·m]	Rated Motor Speed [min ⁻¹]	Maxi- mum Motor Speed [min ⁻¹]						
A5ADAH1D							1/5	0.433/64*2	2.37	600	1200						
A5ADAH2D	50	0000	0000	.	50	0 5 5 7	1/9	1.12/78	3.78 ^{*3}	333	667						
	50	3000	6000	0.1	59	0.557	1/21	2.84/85	10.6	143	286						
A5ADAH7D						-	1/33	3.68/70	15.8	91	182						
01A D AH1 D					1/5	1.06/78*2	4.96	600	1200								
	100	0000	0000	~ ~	40		1/11	2.52/72	10.7	273	545						
	100	3000	6000	0.31	.318	1.11	1/21	5.35/80	20.8	143	286						
01ADAH7D							1/33	7.35/70	32.7	91	182						
C2ADAH1D							1/5	1.68/83*2	7.80	600	1200						
C2ADAHBD				0.477			1/11	3.53/79*2	16.9	273	545						
C2ADAHCD	150	3000	6000		7 1.67	1/21	6.30/70*2	31.0	143	286							
C2ADAH7D							1/33	11.2/79*2	49.7	91	182						
02A D AH1 D							1/5	2.39/75	9.80	600	1200						
							1/11	5.74/82	22.1	273	545						
	200	200	200	200	200	200	200	3000	6000	0.6	37	2.23	1/21	10.2/76	42.1	143	286
02A D AH7 D							1/33	17.0/81	67.6	91	182						
04A D AH1 D				-			1/5	5.35/84	20.1	600	1200						
	400	3000	6000	1.2	07	4.46	1/11	11.5/82	45.1	273	545						
	400	3000	0000	1.4	21	4.40	1/21	23.0/86	87.0	143	286						
04A D AH7 D							1/33	34.0/81	135	91	182						
06A D AH1 D							1/5	7.54/79	30.5	600	1200						
	600	3000	6000	4 (.91	6.69	1/11	18.1/86	68.6	273	545						
	000	3000	6000	1.5	01	0.03	1/21	32.1/80	129	143	286						
06A D AH7 D							1/33	53.6/85	206	91	182						
08ADAH1D		750 3000	0 6000	2.39			1/5	10.0/84	38.4	600	1200						
	750				39	8.36	1/11	23.1/88	86.4	273	545						
	100	0000		2.0		0.00	1/21	42.1/84	163	143	286						
							1/33	69.3/88	259	91	182						

*1. The gear output torque is expressed by the following formula.

Gear output torque = Servomotor output torque × $\frac{1}{\text{Gear ratio}}$ × Efficiency

The gear efficiency depends on operating conditions such as the output torque, motor speed, and temperature. The values in the table are typical values for the rated torque, rated motor speed, and a surrounding air temperature of 25°C. They are reference values only.

*2. When using an SGM7J-A5A, SGM7J-01A, or SGM7J-C2A Servomotor with a gear ratio of 1/5 or an SGM7J-C2A Servomotor with a gear ratio of 1/11, maintain an 85% maximum effective load ratio. For an SGM7J-C2A Servomotor with a gear ratio of 1/21 or 1/33, maintain a 90% maximum effective load ratio. The values in the table take the effective load ratio into consideration.

*3. The instantaneous maximum torque is 300% of the rated torque.

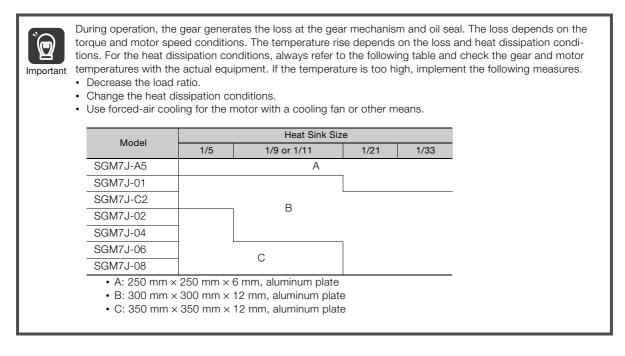
Note: 1. The gears that are mounted to Yaskawa Servomotors have not been broken in.

Break in the Servomotor if necessary. First, operate the Servomotor at low speed with no load. If no problems occur, gradually increase the speed and load.

2. The no-load torque for a Servomotor with a Gear is high immediately after the Servomotor starts, and it then decreases and becomes stable after a few minutes.

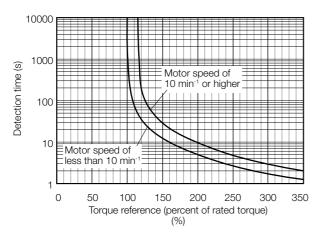
This is a common phenomenon caused by grease circulation in the gears and it does not indicate faulty gears.

3. Other specifications are the same as those for Servomotors without Gears.



The SERVOPACK speed control range is 5,000:1. If you use Servomotors at extremely low speeds (0.02 min⁻¹ or lower at the gear output shaft), if you use Servomotors with a one-pulse feed reference for extended periods, or under some other operating conditions, the gear bearing lubrication may be insufficient. That may cause deterioration of the bearing or increase the load ratio. Contact your Yaskawa representative if you use a Servomotor under these conditions.

	Mome	ent of Iner	tia [×10⁻⁴ kg·	m²]	W	/ith Gears		
Servomotor Model	Shaft O	utput	Flange C	utput	Allowable	Allowable		Reference Diagram
SGM7J-	Motor [*] + Gear	Gear	Motor [*] + Gear	Gear	Radial Load [N]	Thrust Load [N]	LF [mm]	
A5ADAH1D	0.0455	0.006	0.0445	0.005	95	431	37	
A5ADAH2D	0.0425	0.003	0.0425	0.003	113	514	37	
	0.0435	0.004	0.0435	0.004	146	663	37	
A5ADAH7D	0.0845	0.045	0.0845	0.045	267	1246	53	
01A D AH1 D	0.0719	0.006	0.0709	0.005	95	431	37	
	0.126	0.060	0.125	0.059	192	895	53	
	0.116	0.050	0.116	0.050	233	1087	53	
01A D AH7 D	0.131	0.065	0.130	0.064	605	2581	75	
C2ADAH1D	0.0975	0.006	0.0965	0.005	95	431	37	Shaft Output
C2ADAHBD	0.152	0.060	0.151	0.059	192	895	53	▲└►
C2ADAHCD	0.202	0.110	0.200	0.108	528	2254	75	Radial load
C2ADAH7D	0.157	0.065	0.156	0.064	605	2581	75	┼╌╌┤┢╛ _{┱╸} ╷╷╷
02ADAH1D	0.470	0.207	0.464	0.201	152	707	53	Thrust load
	0.456	0.193	0.455	0.192	192	895	53	
	0.753	0.490	0.751	0.488	528	2254	75	Flange Output
02A D AH7 D	0.713	0.450	0.712	0.449	605	2581	75	Fialige Output
04A D AH1 D	0.693	0.207	0.687	0.201	152	707	53	← LF →
	1.06	0.570	1.05	0.560	435	1856	75	
	0.976	0.490	0.974	0.488	528	2254	75	Radial load
04A D AH7 D	1.11	0.620	1.10	0.610	951	4992	128	Thrust load
06A D AH1 D	1.50	0.700	1.46	0.660	343	1465	75	
	1.37	0.570	1.36	0.560	435	1856	75	
	1.64	0.840	1.62	0.820	830	4359	128	
06A□AH7□	1.42	0.620	1.41	0.610	951	4992	128	
08A D AH1 D	2.29	0.700	2.25	0.660	343	1465	75	
	2.19	0.600	2.18	0.590	435	1856	75	
	4.59	3.00	4.57	2.98	830	4359	128	
08A D AH7 D	4.39	2.80	4.37	2.78	951	4992	128	

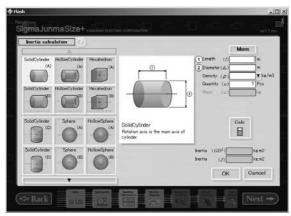

* The moment of inertia for the Servomotor and gear is the value without a holding brake. You can calculate the moment of inertia for a Servomotor with a Gear and Holding Brake with the following formula.

Motor moment of inertia for a Servomotor with a Holding Brake from *Ratings of Servomotors without Gears* (page 6) + Moment of inertia for the gear from the above table.

Servomotor Overload Protection Characteristics

The overload detection level is set for hot start conditions with a Servomotor surrounding air temperature of 40°C.

Note: The above overload protection characteristics do not mean that you can perform continuous duty operation with an output of 100% or higher.


Use the Servomotor so that the effective torque remains within the continuous duty zone given in *Torque-Motor Speed Characteristics* on page 7.

Load Moment of Inertia

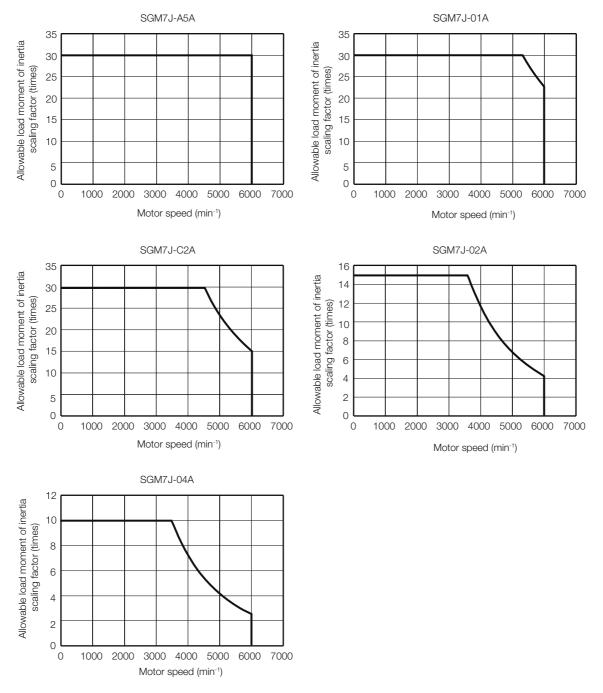
The load moment of inertia indicates the inertia of the load. The larger the load moment of inertia, the worse the response. If the moment of inertia is too large, operation will become unstable.

The allowable size of the load moment of inertia (J_L) for the Servomotor is restricted. Refer to *Ratings of Servomotors without Gears* on page 6. This value is provided strictly as a guideline and results depend on Servomotor driving conditions.

Use the SigmaJunmaSize+ AC Servo Drive Capacity Selection Program to check the driving conditions. Contact your Yaskawa representative for information on this program.

An Overvoltage Alarm (A.400) is likely to occur during deceleration if the load moment of inertia exceeds the allowable load moment of inertia. SERVOPACKs with a built-in regenerative resistor may generate a Regenerative Overload Alarm (A.320). Perform one of the following steps if this occurs.

- Reduce the torque limit.
- Reduce the deceleration rate.
- Reduce the maximum motor speed.
- Install an External Regenerative Resistor if the alarm cannot be cleared using the above steps.


Regenerative resistors are not built into SERVOPACKs for 400-W Servomotors or smaller Servomotors. Even for SERVOPACKs with built-in regenerative resistors, an External Regenerative Resistor is required if the energy that results from the regenerative driving conditions exceeds the allowable loss capacity (W) of the built-in regenerative resistor.

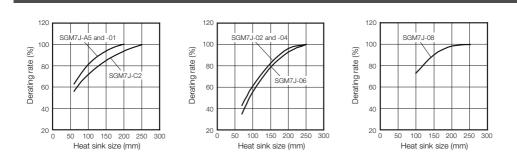
Allowable Load Moment of Inertia Scaling Factor for SERVO-PACKs without Built-in Regenerative Resistors

The following graphs show the allowable load moment of inertia scaling factor of the motor speed for SERVOPACKs* without built-in regenerative resistors when an External Regenerative Resistor is not connected.

If the Servomotor exceeds the allowable load moment of inertia, an overvoltage alarm may occur in the SERVOPACK.

These graphs provide reference data for deceleration at the rated torque or higher with a 200-VAC power supply input.

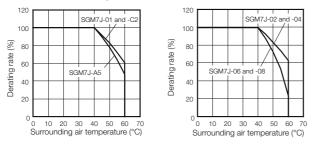
^{*} Applicable SERVOPACK models: SGD7S-R70A, -R90A, -1R6A, or -2R8A


Servomotor Heat Dissipation Conditions

The Servomotor ratings are the continuous allowable values at a surrounding air temperature of 40°C when a heat sink is installed on the Servomotor. If the Servomotor is mounted on a small device component, the Servomotor temperature may rise considerably because the surface for heat dissipation becomes smaller. Refer to the following graphs for the relation between the heat sink size and derating rate.

Note: The derating rates are applicable only when the average motor speed is less than or equal to the rated motor speed. If the average motor speed exceeds the rated motor speed, consult with your Yaskawa representative.

Important


The actual temperature rise depends on how the heat sink (i.e., the Servomotor mounting section) is attached to the installation surface, what material is used for the Servomotor mounting section, and the motor speed. Always check the Servomotor temperature with the actual equipment.

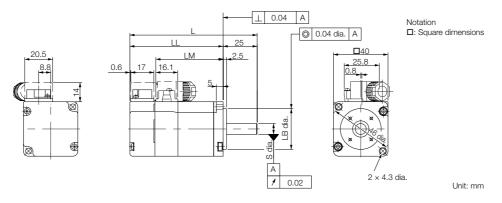
Applications Where the Surrounding Air Temperature of the Servomotor Exceeds 40°C

The Servomotor ratings are the continuous allowable values at a surrounding air temperature of 40°C. If you use a Servomotor at a surrounding air temperature that exceeds 40°C (60°C max.), apply a suitable derating rate from the following graphs.

Note: The derating rates are applicable only when the average motor speed is less than or equal to the rated motor speed. If the average motor speed exceeds the rated motor speed, consult with your Yaskawa representative.

Applications Where the Altitude of the Servomotor Exceeds 1,000 m

The Servomotor ratings are the continuous allowable values at an altitude of 1,000 m or less. If you use a Servomotor at an altitude that exceeds 1,000 m (2,000 m max.), the heat dissipation effect of the air is reduced. Apply the appropriate derating rate from the following graphs.

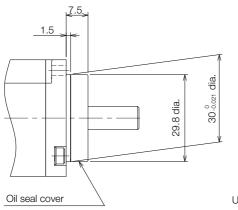

Note: The derating rates are applicable only when the average motor speed is less than or equal to the rated motor speed. If the average motor speed exceeds the rated motor speed, consult with your Yaskawa representative.

External Dimensions

Servomotors without Gears

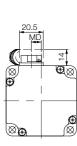
◆ SGM7J-A5, -01, and -C2

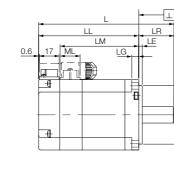
Model SGM7J-	L	LL	LM	LB	S	Approx. Mass [kg]
	81.5 (122)	56.5 (97)	37.9	30 _0.021	8 0 -0.009	0.3 (0.6)
01A D A2D	93.5 (134)	68.5 (109)	49.9	30 0 -0.021	8 -0.009	0.4 (0.7)
C2ADA2D	105.5 (153.5)	80.5 (128.5)	61.9	30 _0.021	8 _0.009	0.5 (0.8)

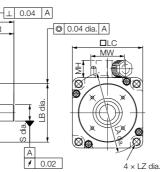

Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

2. Refer to the following section for detailed shaft end specifications.

■ Shaft End Specifications (page 16)


Specifications of Options


Oil Seal



Unit: mm

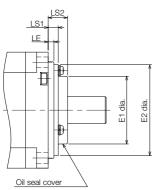
◆ SGM7J-02, -04, -06, and -08

LZ dia.	Unit:	mm
---------	-------	----

Model SGM7J-	L	LL	LM	Flange Dimensions						S	
	L			LR	LE	LG	LC	LA	LB	LZ	
02A□A2□	99.5 (140)	69.5 (110)	51.2	30	3	6	60	70	50 -0.025	5.5	14 ⁰ -0.011
04A□A2□	115.5 (156)	85.5 (126)	67.2	30	3	6	60	70	50 0-0.025	5.5	14 ⁰ -0.011
0640420	137.5 (191.5)	107.5 (161.5)	89.2	30	3	6	60	70	50 -0.025	5.5	14 ⁰ -0.011
08A□A2□	137 (184)	97 (144)	78.5	40	3	8	80	90	70 -0.030	7	19 ⁰ -0.013

S dia.

Model SGM7J-	MD	MW	MH	ML	Approx. Mass [kg]
	8.5	28.7	14.7	17.1	0.8 (1.4)
04A D A2D	8.5	28.7	14.7	17.1	1.1 (1.7)
06A□A2□	8.5	28.7	14.7	17.1	1.6 (2.2)
08A□A2□	13.6	38	14.7	19.3	2.2 (2.8)


Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

2. Refer to the following section for detailed shaft end specifications.

Shaft End Specifications (page 16)

Specifications of Options

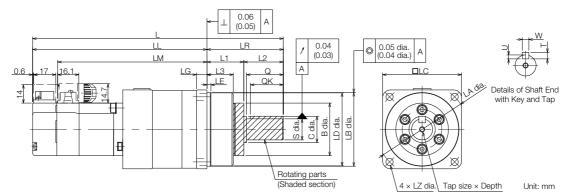
• Oil Seal

Onit. mini	Unit:	mm	
------------	-------	----	--

Model SGM7J-	Dimensions with Oil Seal									
	E1	E2	LS1	LS2						
02A, 04A, 06A	35	47	5.2	10						
08A	47	61	5.5	11						

Shaft End Specifications

♦ SGM7J-**□**□□□□<u>□</u>□


Code	Spec	ification
2	Straight without key	
6	Straight with key and t (Key slot is JIS B1301	ap for one location -1996 fastening type.)
В	With two flat seats	

l

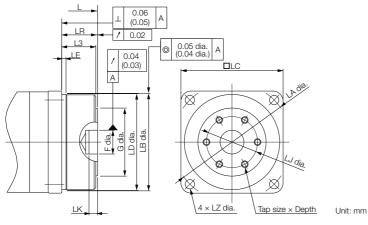
Shaft End Details		Servomotor Model SGM7J-									
		A5	01	C2	02	04	06	08			
Code: 2 (Straight without Key)					1						
	LR	25				30		40			
	S		8 ⁰ -0.009			14 _{-0.011}	19 .0.013				
Code: 6 (Straight with Key and Tap)								L			
LR	LR		25			30		40			
	QK	14			14			22			
	S	8 -0.009			14 ⁰ -0.011 5 5 3 M5 × 8L			19 ⁰ -0.013			
	W	3 3		6							
	Т			6							
Y ∉ T_↓ k ∽ Cross section Y-Y	U	1.8 M3 × 6L						3.5			
	Р							M6 × 10L			
Code: B (with Two Flat Seats)											
+ LR +	LR		25			30		40			
QH	QH		15			15		22			
	S		8 -0.009			14 ⁰ -0.011		19 _{-0.013}			
	H1		7.5		13			18			
Y ≝ H ² + k ′ ∽ Cross section Y-Y	H2		7.5			13		18			

Servomotors with Gears

◆ SGM7J-A5, -01, and -C2

Model SGM7J-	Gear	I	LL	LM					Flang	e Dim	ension	s		
	Ratio	L					LE	LG	В	LD	LB	LC	LA	LZ
A5A□AH1 IN□	1/5	138	96	77.4	1									
A5A□AH2 IN□	1/9	(178.5)	(136.5)	11.5	+	42	2.2	5	29	39.5	40 .0.02	40	46	3.4
A5AOAHC®O	1/21	147 (187.5)	105 (145.5)	86.4	4									
A5A□AH7□	1/33	178.5 (219)	120.5 (161)	101.	9	58	2.5	8	40	55.5	56 .0.03	60	70	5.5
01A□AH1 I □	1/5	150 (190.5)	108 (148.5)	89.4	4	42	2.2	5	29	39.5	40 .0.02	40	46	3.4
01A□AHB⊮□	1/11	190.5	132.5	113.	a	58	2.5	8	40	55.5	56 .0.03	60	70	5.5
	1/21	(231)	(173)	110.0	3	50	2.0	0	40	00.0	50 -0.03		10	0.0
01A□AH7⊠□	1/33	215 (255.5)	135 (175.5)	116.	4	80	7.5	10	59	84	85 .0.03	90	105	9
C2A□AH1 II□	1/5	162 (210)	120 (168)	101.	4	42	2.2	5	29	39.5	40 .0.02	40	46	3.4
C2A□AHB I □	1/11	202.5 (250.5)	144.5 (192.5)	125.	9	58	2.5	8	40	55.5	56 .0.03	60	70	5.5
C2ADAHC ID	1/21	227	147	128.	Л	80	7.5	10	59	84	85 .0.03	90	105	9
C2A□AH7 I∎□	1/33	(275)	(195)	120.	+	00	1.5	10	59	04	00 -0.03	5 90	105	J
	Fland	ge Dimensio	ns			-	Tap S	ize×	Ke	y Dim	ension	s	Appr	ox.
Model SGM7J-	L1	L2	L3 Q	С		S	Dep		QK	U	W	Т	Mass	

Model SGM7J-	Flan	ge Dimens	sions	Q	С	S	Tap Size \times	Ke	y Dim	iensic	ons	Approx.
woder Scivi7J-	L1	L2	L3	Q		3	Depth	QK	U	W	Т	Mass [kg]
A5A□AH1 🗷 🗆												0.6
A5A□AH2 II□	22	20	14.6	_	_	10 .0.015	$M3 \times 6L$	15	2.5	4	4	(0.9)
A5AOAHC®O												0.7 (1.0)
A5A□AH7 ⊠□	28	30	20	28	20	16 .0.018	$M4 \times 8L$	25	3	5	5	1.3 (1.6)
01A□AH1 🗷 🗆	22	20	14.6	-	_	10 .0.015	$M3 \times 6L$	15	2.5	4	4	0.7 (1.0)
01A□AHB⊠□	28	30	20	28	20	16 ⁰ -0.018	$M4 \times 8L$	25	3	5	5	1.4
	20	00	20	20	20	10 -0.018	MILX OF	20	Ŭ	0	Ŭ	(1.7)
01A □ AH7 ⊠ □	36	44	26	42	32	25 .0.021	$M6 \times 12L$	36	4	8	7	2.8 (3.1)
C2A□AH1 ඔ□	22	20	14.6	-	_	10 .0.015	$M3 \times 6L$	15	2.5	4	4	0.8 (1.1)
C2A□AHB⊠□	28	30	20	28	20	16 .0.018	$M4 \times 8L$	25	3	5	5	1.5 (1.8)
C2A□AHC II □	36	44	26	42	32	25 .0.021	M6 × 12L	36	4	8	7	2.9
C2A□AH7 🗷 🗆	00		20	72	02	∠J -0.021	IVIO A TZL	00	-	0		(3.2)


* The asterisk (*) is replaced by shaft end code 6 (straight with key and tap) for the 8th digit of the model designation.

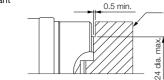
If a key and tap are not necessary, specify shaft end code 2 (without key and tap).

Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

2. Gear dimensions are different from those of the $\Sigma,$ $\Sigma\text{-II},$ and $\Sigma\text{-III}$ Series.

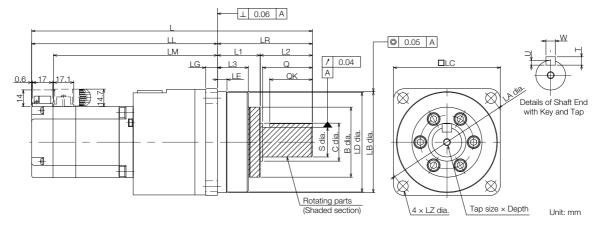
■ Flange Output Face

Note: The geometric tolerance in parentheses is the value for LC = 40.


Model SGM7J-	Gear Ratio	L	LR	LJ	F	G	LK	No. of Taps \times Tap Size \times Depth	Approx. Mass [kg]
A5ADAH10D	1/5	111							
A5ADAH20D	1/9	(151.5)	15	18	5 +0.012	24	3	$3 \times M4 \times 6L$	0.6
	1/21	120 (160.5)		10	0.0	21	0	0	(0.9)
	1/33	141.5 (182)	21	30	14 ^{+0.018}	40	5	$6 \times M4 \times 7L$	1.2 (1.5)
01ADAH10D	1/5	123 (163.5)	15	18	5 +0.012	24	3	$3 \times M4 \times 6L$	0.7 (1.0)
	1/11	153.5	21	30	14 +0.018 0	40		$3 \times M4 \times 7L$	1.3
	1/21	(194)	21	50	14 0	40	5	5 × 1014 × 7 L	(1.6)
01ADAH70D	1/33	162 (202.5)	27	45	24 0+0.021	59	0	$6 \times M6 \times 10L$	2.4 (2.7)
C2ADAH10D	1/5	135 (183)	15	18	5 +0.012	24	3	$3 \times M4 \times 6L$	0.8 (1.1)
C2ADAHB0D	1/11	165.5 (213.5)	21	30	14 ^{+0.018}	40	5	$6 \times M4 \times 7L$	1.4 (1.7)
C2ADAHC0D	1/21	174	27	45	24 ^{+0.021}	59	5	$6 \times M6 \times 10L$	2.5
C2ADAH70D	1/33	(222)	21	40	Z4 0	09	5		(2.8)

Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

2. Dimensions not found in the above table are the same as those in the table on the previous page.

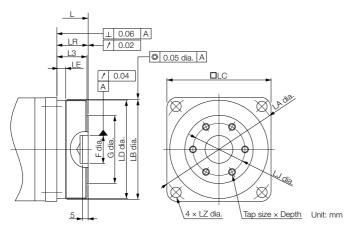


For a Servomotor with a flange output that has square gear flange dimensions (\Box LC) of 40 mm, we recommend that you design the Servomotor with the dimensions shown in the following figure in order to secure a gap between the gear oil seal and the connecting parts on the load side.

◆ SGM7J-02, -04, and -06

Model SGM7J-	Gear	1	LL	LM				Flar	nge Din	nensions			
	Ratio	L	LL	LIVI	LR	LE	LG	В	LD	LB	LC	LA	LZ
02A□AH1 I □	1/5	191.5	133.5	115.2	58	2.5	8	40	55.5	56 .0.030	60	70	5.5
02A□AH2⊠□	1/11	(232)	(174)	110.2	00	2.0	0	40	00.0	50 -0.030	00	10	0.0
02AOAHC I O	1/21	220.5	140.5	122.2	80	7.5	10	59	84	85 _{-0.035}	90	105	9
02A□AH7 I □	1/33	(261)	(181)	122.2	00	1.5	10	59	04	00 .0.035	30	105	9
04A□AH1 ₪□	1/5	207.5 (248)	149.5 (190)	131.2	58	2.5	8	40	55.5	56 .0.030	60	70	5.5
04A□AHB⊠□	1/11	236.5	156.5	138.2	80	7.5	10	59	84	85 ⁰ -0.035	90	105	9
	1/21	(277)	(197)	100.2	00	7.5	10	09	04	OO -0.035	30	105	9
04A□AH7 🗷 🗆	1/33	322.5 (363)	189.5 (230)	171.2	133	12.5	13	84	114	115 ⁰ -0.035	120	135	11
06A□AH1 I □	1/5	258.5	178.5	160.2	80	7.5	10	59	84	85 ⁰ -0.035	90	105	9
06A□AHB 🗷 🗆	1/11	(312.5)	(232.5)	100.2	00	1.5	10	39	04	OU -0.035	30	100	3
	1/21	344.5	211.5	193.2	133	12.5	13	84	114	115 ⁰ -0.035	120	135	11
06A□AH7 🗷 🗆	1/33	(398.5)	(265.5)	130.2	100	12.0	10	04	114	TTO -0.035	120	100	11

Model SGM7J-	Flan	ige Dimen	sions	Q	С	S	Tap Size \times	K	ey Dim	nensior	าร	Approx.
	L1	L2	L3	Q	U	0	Depth	QK	U	W	Т	Mass [kg]
02A□AH1 🗷 🗆	28	30	20	28	20	16 ⁰ -0.018	$M4 \times 8L$	25	3	5	5	1.8 (2.4)
02A□AH2⊠□	20	30	20	20	20	10 -0.018		20	5	5	5	1.9 (2.5)
	36	44	26	42	32	25 ⁰ -0.021	M6 × 12L	36	4	8	7	3.7
02A□AH7 🗷 🗆	00		20	72	02	20 -0.021		00	4	0	'	(4.3)
04A□AH1 🗷 🗆	28	30	20	28	20	16 ⁰ -0.018	$M4 \times 8L$	25	3	5	5	2.1 (2.7)
	36	44	26	42	32	25 ⁰ -0.021	M6 × 12L	36	4	8	7	4.0 (4.6)
04A□AH7 🗷 🗆	48	85	33	82	44	40 _0.025	M10 × 20L	70	5	12	8	8.6 (9.2)
06A□AH1 🗷 🗆	36	44	26	42	32	25 ⁰ -0.021	M6 × 12L	36	4	8	7	4.3 (4.9)
06A□AHB⊠□	00		20	72	02	o.021 کے ۔		00	7	0	1	4.5 (5.1)
06A□AHC II □ 06A□AH7 II □	48	85	33	82	44	40 _0.025	M10 × 20L	70	5	12	8	9.1 (9.7)

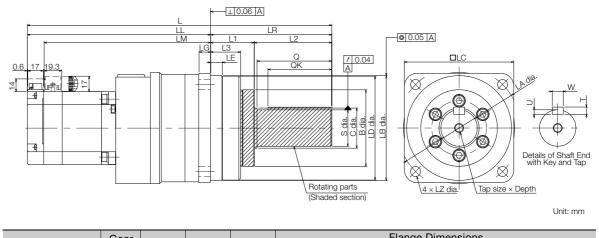

* The asterisk (*) is replaced by shaft end code 6 (straight with key and tap) for the 8th digit of the model designation.

If a key and tap are not necessary, specify shaft end code 2 (without key and tap).

Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

2. Gear dimensions are different from those of the $\Sigma,$ $\Sigma\text{-II},$ and $\Sigma\text{-III}$ Series.

■ Flange Output Face

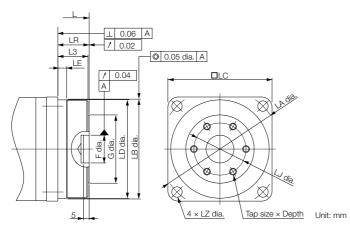


Model SGM7J-	Gear Ratio	L	LR	LJ	F	G	No. of Taps \times Tap Size \times Depth	Approx. Mass [kg]
02ADAH10D	1/5	154.5	21	30	14 ^{+0.018}	40	$6 \times M4 \times 7L$	1.7 (2.3)
02ADAH20D	1/11	(195)	21	50	14 0	40	0 × 1014 × 7 E	1.8 (2.4)
02AOAHC0O	1/21	167.5	27	45	24 ^{+0.021}	59	$6 \times M6 \times 10L$	3.3
02A□AH70□	1/33	(208)	21	40	24 0	- 59		(3.9)
04ADAH10D	1/5	170.5 (211)	21	30	14 ^{+0.018}	40	$6 \times M4 \times 7L$	2.0 (2.6)
	1/11	183.5	27	45	24 +0.021	59	$6 \times M6 \times 10L$	3.6
04AOAHCOO	1/21	(224)	21	40	24 0	- 39		(4.2)
04ADAH70D	1/33	224.5 (265)	35	60	32 +0.025 0	84	$6 \times M8 \times 12L$	7.2 (7.8)
06ADAH10D	1/5	205.5	27	45	24 ^{+0.021}	59	6 × M6 × 10∟	3.9 (4.5)
	1/11	(259.5)	21	40	24 0	39		4.1 (4.7)
06AOAHC0O	1/21	246.5	35	60	32 +0.025	84	6 × M8 × 12L	7.7
06A□AH70□	1/33	(300.5)	5	00	JZ 0	04	U A IVIO A 12L	(8.3)

Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

2. Dimensions not found in the above table are the same as those in the table on the previous page.

♦ SGM7J-08


Model SGM7J-	Gear	1	LL	L LM-					Flar	nge D	Imen	sions			
	Ratio	L			.1V1	LR	LE	E LG	В	LD)	LB	LC	LA	LZ
08A□AH1 I □	1/5	255	175	15	6.5	80	7.5	5 10	59	84	2	35 ⁰ -0.035	90	105	9
	1/11	(302)	(222)	10	0.0	00	1.0		00	04		-0.035	30	100	3
	1/21	334	201	18	2.5	133	12.	5 13	84	114	1 1	15 .0.035	120	135	11
08A□AH7 I □	1/33	(381)	(248)	10	2.0	100	12.	5 15	04	114	+ 1	10 -0.035	120	100	11
Model SGM7J-	Flai	nge Dimens	sions	Q C		s		Tap Size $ imes$		Key D		nensior	IS	Appr	ox.
	L1	L2	L3	Q	U		,	Depth		QK	U	W	Т	Mass	[kg]
08A□AH1 🗷 🗆														5. (5.	
	- 36	44	26	42	32	25	0	$M6 \times 12$	2L	36	4	8	7	,	
						_	0.021							5.0	
														(5.9	9)
	- 48	85	33	82	44	40 .	0	$M10 \times 2$		70	5	12	8	10)
08A□AH7 🗷 🗆	40	00	00	02	44	40.	0.025			10	0	12	0	(10.	.6)
															,

* The asterisk (*) is replaced by shaft end code 6 (straight with key and tap) for the 8th digit of the model designation. If a key and tap are not necessary, specify shaft end code 2 (without key and tap).

Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

2. Gear dimensions are different from those of the $\Sigma,$ $\Sigma\text{-II},$ and $\Sigma\text{-III}$ Series.

■ Flange Output Face

Model SGM7J-	Gear Ratio	L	LR	LJ	F	G	No. of Taps \times Tap Size \times Depth	Approx. Mass [kg]
08A D AH101	1/5	202	27	45	24 ^{+0.021}	59	$6 \times M6 \times 10L$	4.7 (5.3)
08ADAHB01	1/11	(249)	21	40	24 0	59	0 X IVIO X TOL	4.9 (5.5)
08ADAHC01	1/21	236	35	60	32 +0.025	84	6 × M8 × 12L	8.6
08ADAH701	1/33	(283)	55	00	JZ 0	04	U A IVIO A TZL	(9.2)

Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

2. Dimensions not found in the above table are the same as those in the table on the previous page.

Model Designations

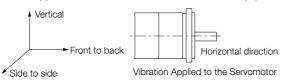
Without Gears		
SGM7A - 01	A 7 A 2	1
1st+2nd	3rd digit 4th digit 5th digit 6th digit	7th digit
Σ-7 Series digits Servomotors:	digit digit digit digit	digit
SGM7A		
1st+2nd digits Rated Output	2rd digit Rower Supply Voltage	6th digit) Shaft End
Code Specification	3rd digit Power Supply Voltage Code Specification	Code Specification
A5 50 W	A 200 VAC	2 Straight without key
01 100 W		6 Straight with key and tap
C2 150 W 02 200 W	4th digit Serial Encoder Code Specification	B* With two flat seats * Code B is not supported for models with
04 400 W	7 24-bit absolute	a rated output of 1.5 kW or higher.
06 600 W	F 24-bit incremental	7th digit Options
08 750 W 10 1.0 kW	5th digit Design Revision Order	Code Specification
15 1.5 kW	A	1 Without options C With holding brake (24 VDC)
20 2.0 kW 25 2.5 kW		E With oil seal and holding brake
30 3.0 kW		(24 VDC)
40 4.0 kW		S With oil seal Note: SGM7A-70A Servomotors with
50 5.0 kW 70 7.0 kW		holding brakes are not available.
With Gears SGM7A - 01 Σ-7 Series Servomotors: SGM7A	A 7 A H 3rd 4th digit digit digit	1 2 1 7th ath gth digit digit
1st+2nd digits Rated Output	5th digit Design Revision Order	8th digit Shaft End
Code Specification	A	Code Specification
A5 50 W 01 100 W	6th digit Gear Type	0 Flange output 2 Straight without key
C2 150 W	Code Specification	6 Straight with key and tap
02 200 W	H HDS planetary low-backlash ge	
04 400 W	7th digit Gear Ratio	9th digit Options
06 600 W	Code Specification	Code Specification
08 750 W 10 1.0 kW	B 1/11*1	1 Without options
	C 1/21	C With holding brake (24 VDC)
3rd digit Power Supply Voltage	1 1/5	
Code Specification	2 1/9*2	
A 200 VAC	7 1/33	
4th digit Serial Encoder Code Specification	 *1. This specification is not support models with a rated output of 5 *2. This specification is supported of models with a rated output of 5 	0 W. only for
7 24-bit absolute F 24-bit incremental		

Note: Contact your Yaskawa representative for models of 1.5 kW or higher.

Specifications and Ratings

Specifications

	Voltage		200 V
N	lodel SGM7A-		A5A to 70A
Time Rating			Continuous
Thermal Class	3		B: A5A to 10A F: 15A to 70A
Insulation Res	istance		500 VDC, 10 MΩ min.
Withstand Vol	tage		1,500 VAC for 1 minute
Excitation			Permanent magnet
Mounting			Flange-mounted
Drive Method			Direct drive
Rotation Direc	otion	Counterclockwise (CCW) for forward reference when viewed from the load side
Vibration Clas	s*1		V15
	Surrounding Air Temperature	0°C to 40°C (Wit	n derating, usage is possible between 40°C and 60°C.)*4
	Surrounding Air Humidity	20% to 8	0% relative humidity (with no condensation)
Environmen- tal Condi- tions	Installation Site	 Must be well-' Must facilitate Must have an is possible be 	ors and free of corrosive and explosive gases. ventilated and free of dust and moisture. inspection and cleaning. altitude of 1,000 m or less. (With derating, usage tween 1,000 m and 2,000 m.) ^{*5} of strong magnetic fields.
	Storage Environment	power cable disc Storage Tempera	ature: -20°C to 60°C (with no freezing) y: 20% to 80% relative humidity
Shock	Impact Acceleration Rate at Flange		490 m/s ²
Resistance*2	Number of Impacts		2 times
Vibration Resistance ^{*3}	Vibration Acceleration Rate at Flange	A5A to 50A	49 m/s ² (Models 15A to 50A: 24.5 m/s ² front to back)
nesistance	nate at nange	70A	14.7 m/s
Applicable SE	RVOPACKs	Refer to the follo \mathbb{F}^{2} Σ -7 Series C	owing section. Combination (page M-18)


*1. A vibration class of V15 indicates a vibration amplitude of 15 µm maximum on the Servomotor without a load at the rated motor speed.

*2. The shock resistance for shock in the vertical direction when the Servomotor is mounted with the shaft in a horizontal position is given in the above table.

Shock Applied to the Servomotor

*3. The vertical, side-to-side, and front-to-back vibration resistance for vibration in three directions when the Servomotor is mounted with the shaft in a horizontal position is given in the above table. The strength of the vibration that the Servomotor can withstand depends on the application. Always check the vibration acceleration rate that is applied to the Servomotor with the actual equipment.

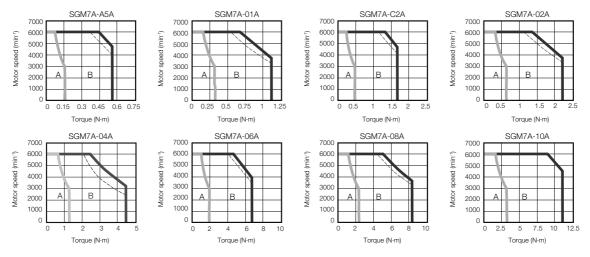
*4. If the surrounding air temperature will exceed 40°C, refer to the following section.

- ∎ Applications Where the Surrounding Air Temperature of the Servomotor Exceeds 40 ℃ (page 36)
- *5. If the altitude will exceed 1,000 m, refer to the following section.
 - Applications Where the Altitude of the Servomotor Exceeds 1,000 m (page 36)

Ratings of Servomotors without Gears

	Voltage		200 V									
M	odel SGM7A-		A5A	01A	C2A	02A	04A	06A	08A	10A		
Rated Output ^{*1}		W	50	100	150	200	400	600	750	1000		
Rated Torque*1, *2		N∙m	0.159	0.318	0.477	0.637	1.27	1.91	2.39	3.18		
Instantaneous Ma	ximum Torque ^{*1}	N∙m	0.557	1.11	1.67	2.23	4.46	6.69	8.36	11.1		
Rated Current ^{*1}		Arms	0.57	0.89	1.5	1.5	2.4	4.5	4.4	6.4		
Instantaneous Ma	ximum Current ^{*1}	Arms	2.1	3.2	5.6	5.9	9.3	16.9	16.8	23.2		
Rated Motor Spee	ed*1	min ⁻¹		1	1	30	00	1		I		
Maximum Motor S	Speed ^{*1}	min⁻¹				60	000					
Torque Constant		N•m/Arms	0.304	0.384	0.332	0.458	0.576	0.456	0.584	0.541		
Motor Moment of	Inertia	×10 ⁻⁴ kg·m ²	0.0217 (0.0297)	0.0337 (0.0417)	0.0458 (0.0538)	0.139 (0.209)	0.216 (0.286)	0.315 (0.385)	0.775 (0.955)	0.971 (1.15)		
Rated Power Rate	*1	kW/s	11.7 (8.51)	30.0 (24.2)	49.7 (42.2)	29.2 (19.4)	74.7 (56.3)	115 (94.7)	73.7 (59.8)	104 (87.9)		
Rated Angular Ac	celeration Rate ^{*1}	rad/s ²	73200 (53500)	94300 (76200)	104000 (88600)	45800 (30400)	58700 (44400)	60600 (49600)	30800 (25000)	32700 (27600)		
Derating Rate for Oil Seal	Servomotor with	%	80		90	I		g	5	<u> </u>		
Heat Sink Size		mm	200 × 2	200 × 6	250) × 250	× 6	300 x 300 x 12 ^{*7}	300 × 300 × 12			
Protective Structu	re ^{*3}			Tc	tally en	closed,	self-co	oled, IP	67	I <u> </u>		
	Rated Voltage	V				24 VD	C±10%					
	Capacity	W		5.5	r.	(6		6.5			
	Holding Torque	N∙m	0.159	0.318	0.477	0.637	1.27	1.91	2.39	3.18		
Holding Brake Specifications ^{*4}	Coil Resistance	Ω (at 20°C)	10)4.8±10)%	96±	10%	8	8.6±10'	%		
Specifications	Rated Current	A (at 20°C)		0.23		0.	25		0.27			
	Time Required to Release Brake	ms			60				80			
	Time Required to Brake	ms				1(00					
Allowable Load M (Motor Moment of	Inertia Ratio)			40 time:	S	30	20 t	imes	20 t	imes		
	With External Reg tor and Dynamic E				-	times				imes		
	LF	mm		20			25		3	5		
Allowable Shaft Loads ^{*5}	Allowable Radial Load	Ν		78			245		39	92		
	Allowable Thrust Load	Ν		54			74		14	47		

Note: 1. The values in parentheses are for Servomotors with Holding Brakes.


2. Refer to the following section for footnotes *1 to *5 and *7.

■ Notes for Ratings of Servomotor without Gears and Servomotor Ratings (page 29)

Torque-Motor Speed Characteristics

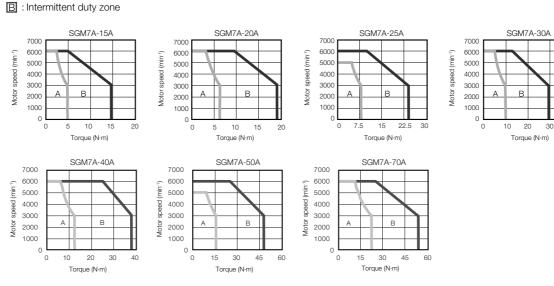
A : Continuous duty zone B : Intermittent duty zone

(solid lines): With three-phase 200-V or single-phase 230-V input (dotted lines): With single-phase 200-V input

- Note: 1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. These are typical values.
 - 2. The characteristics in the intermittent duty zone depend on the power supply voltage.
 - 3. If the effective torque is within the allowable range for the rated torque, the Servomotor can be used within the intermittent duty zone.
 - 4. If you use a Servomotor Main Circuit Cable that exceeds 20 m, the intermittent duty zone in the torquemotor speed characteristics will become smaller because the voltage drop increases.

Servomotor Ratings

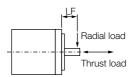
	Voltage					200 \	/		
	Model SGM7A	-	15A	20A	25A	30A	40A	50A	70A
Rated Outpu	ut ^{*6}	kW	1.5	2.0	2.5	3.0	4.0	5.0	7.0
Rated Torqu	e ^{*2, *6}	N∙m	4.90	6.36	7.96	9.80	12.6	15.8	22.3
Instantaneou Torque ^{*6}	us Maximum	N∙m	14.7	19.1	23.9	29.4	37.8	47.6	54.0
Rated Curre	nt ^{*6}	Arms	9.3	12.1	15.6	17.9	25.4	27.6	38.3
Instantaneou Current ^{*6}	us Maximum	Arms	28	42	51	56	77	84	105
Rated Motor	r Speed ^{*6}	min ⁻¹		I.	L	3000	L	1	
Maximum M	otor Speed ^{*6}	min ⁻¹				6000			
Torque Cons	stant	N•m/Arms	0.590	0.561	0.538	0.582	0.519	0.604	0.604
Motor Mome	ent of Inertia	$\times 10^{-4} \text{ kg} \cdot \text{m}^2$	2.00 (2.25)	2.47 (2.72)	3.19 (3.44)	7.00 (9.20)	9.60 (11.8)	12.3 (14.5)	12.3
Rated Powe	r Rate ^{*6}	kW/s	120 (106)	164 (148)	199 (184)	137 (104)	165 (134)	203 (172)	404
Rated Angul tion Rate ^{*6}	ar Accelera-	rad/s ²	24500 (21700)	25700 (23300)	24900 (23100)	14000 (10600)	13100 (10600)	12800 (10800)	18100
Heat Sink Si	ze	mm	30	$00 \times 300 \times$	12		400	× 400 × 20	
Protective S		1		Totally	r enclosed,	self-coolec	I, IP67		Totally enclosed, separately cooled (with fan), IP22
	Rated Volt- age	V			24 VE	DC ^{+10%}			
	Capacity	W		12	1		10		
	Holding Torque	N∙m	7.	84	10		20		
Holding Brake	Coil Resis- tance	Ω (at 20°C)		48			59		
Specifica- tions ^{*4}	Rated Cur- rent	A (at 20°C)		0.5			0.41		-
	Time Required to Release Brake	ms		170			100		
	Time Required to Brake	ms			8	80			
	Allowable Load Moment of Inertia (Motor Moment of Inertia Ratio)			10 times			5	times	
	With External Regenerative Resistor and Dynamic Brake Resistor			20 times			15	5 times	
	LF	mm		45				63	
Allowable Shaft	Allowable Radial Load	Ν		686		980 1176			
Loads ^{*5}	Allowable Thrust Load	N		196					


Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

2. Refer to the following section for footnotes *2 to *6.

■ Notes for Ratings of Servomotor without Gears and Servomotor Ratings (page 29)

40


Torque-Motor Speed Characteristics for Three-phase, 200 V

- Note: 1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 20°C. These are typical values.
 - 2. The characteristics in the intermittent duty zone depend on the power supply voltage.
 - 3. If the effective torque is within the allowable range for the rated torque, the Servomotor can be used within the intermittent duty zone.
 - 4. If you use a Servomotor Main Circuit Cable that exceeds 20 m, the intermittent duty zone in the torquemotor speed characteristics will become smaller because the voltage drop increases.

Notes for Ratings of Servomotor without Gears and Servomotor Ratings

- *1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. The values for other items are at 20°C. These are typical values.
- *2. The rated torques are the continuous allowable torque values at a surrounding air temperature of 40°C with an aluminum heat sink of the dimensions given in the table.
- *3. This does not apply to the shaft opening. Protective structure specifications apply only when the special cable is used.
- *4. Observe the following precautions if you use a Servomotor with a Holding Brake.
 - The holding brake cannot be used to stop the Servomotor.
 - The time required to release the brake and the time required to brake depend on which discharge circuit is used. Confirm that the operation delay time is appropriate for the actual equipment.
 - The 24-VDC power supply is not provided by Yaskawa.
- *5. The allowable shaft loads are illustrated in the following figure. Design the mechanical system so that the thrust and radial loads applied to the Servomotor shaft end during operation do not exceed the values given in the table.

A : Continuous duty zone

- *6. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 20°C. These are typical values.
- *7. If the heat sink is 250 mm × 250 mm × 6 mm, the rated output is 550 W and the rated torque is 1.75 N⋅m. Refer to the following section for details.
 - Servomotor Heat Dissipation Conditions (page 35)

Ratings of Servomotors with Gears

	Ge	ar Mech	anism		Protec	ctive Sti	ructure	Lost I	Motion [a	rc-min]
All Models	Planeta	ary gear r	nechanisr	n T			-cooled, IP55 opening)		3 max.	
			Servomotor				G	ear Output		
Servomotor Model SGM7A-	Rated Output [W]	Rated Motor Speed [min ⁻¹]	Maxi- mum Motor Speed [min ⁻¹]	Rate Torqi [N⋅m		Gear Ratio	Rated Torque/ Efficiency*1 [N·m/%]	Instanta- neous Maxi- mum Torque [N·m]	Rated Motor Speed [min ⁻¹]	Maxi- mum Motor Speed [min ⁻¹]
A5ADAH1D						1/5	0.433/64*2	2.37	600	1200
	50	3000	6000	0.15	0 0 5 5 7	1/9	1.12/78	3.78 ^{*3}	333	667
	50	3000	6000	0.15	0.557	1/21	2.84/85	10.6	143	286
A5ADAH7D						1/33	3.68/70	15.8	91	182
01A D AH1 D						1/5	1.06/78*2	4.96	600	1200
	100	0000	0000	0.01	0 1 1 1	1/11	2.52/72	10.7	273	545
	100	3000	6000	0.31	8 1.11	1/21	5.35/80	20.8	143	286
01A D AH7 D						1/33	7.35/70	32.7	91	182
C2ADAH1D						1/5	1.68/83*2	7.80	600	1200
С2АПАНВП						1/11	3.53/79 ^{*2}	16.9	273	545
C2ADAHCD	150	3000	6000	0.47	7 1.67	1/21	6.30/70 ^{*2}	31.0	143	286
C2ADAH7D	-					1/33	11.2/79 ^{*2}	49.7	91	182
02A□AH1□						1/5	2.39/75	9.80	600	1200
				0.00		1/11	5.74/82	22.1	273	545
	200	3000	6000	0.63	2.23	1/21	10.2/76	42.1	143	286
02A□AH7□	-					1/33	17.0/81	67.6	91	182
04ADAH1D						1/5	5.35/84	20.1	600	1200
	400	3000	6000	1.2	7 4.46	1/11	11.5/82	45.1	273	545
	400	3000	0000	1.2	4.40	1/21	23.0/86	87.0	143	286
04A D AH7 D						1/33	34.0/81	135	91	182
06A D AH1 D						1/5	7.54/79	30.5	600	1200
	600	3000	6000	1.9	1 6.69	1/11	18.1/86	68.6	273	545
	000	0000	0000	1.0	. 0.00	1/21	32.1/80	129	143	286
06A D AH7 D						1/33	53.6/85	206	91	182
08A D AH1 D						1/5	10.0/84	38.4	600	1200
	750	3000	6000	2.3	9 8.36	1/11	23.1/88	86.4	273	545
					5.00	1/21	42.1/84	163	143	286
08A□AH7□						1/33	69.3/88	259	91	182
						1/5	13.7/86	52.5	600	1200
	1000	3000	6000	3.18	8 11.1	1/11	29.1/83	111	273	545
						1/21	58.2/87	215	143	286
10A D AH7 D						1/33	94.5/90	296*3	91	182

*1. The gear output torque is expressed by the following formula.

Gear output torque = Servomotor output torque × $\frac{1}{\text{Gear ratio}}$ × Efficiency

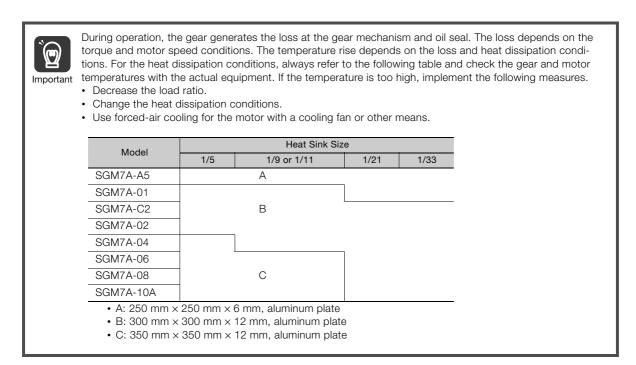
The gear efficiency depends on operating conditions such as the output torque, motor speed, and temperature. The values in the table are typical values for the rated torque, rated motor speed, and a surrounding air temperature of 25°C. They are reference values only.

*2. When using an SGM7A-A5A, SGM7A-01A, or SGM7A-C2A Servomotor with a gear ratio of 1/5 or an SGM7A-C2A Servomotor with a gear ratio of 1/11, maintain an 85% maximum effective load ratio. For an SGM7A-C2A Servomotor with a gear ratio of 1/21 or 1/33, maintain a 90% maximum effective load ratio. The values in the table take the effective load ratio into consideration.

*3. The instantaneous maximum torque is 300% of the rated torque.

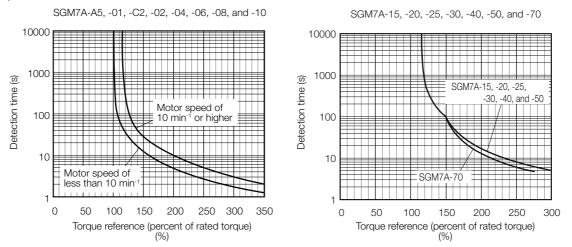
Note: 1. The gears that are mounted to Yaskawa Servomotors have not been broken in.

- Break in the Servomotor if necessary. First, operate the Servomotor at low speed with no load. If no problems occur, gradually increase the speed and load.
- 2. The no-load torque for a Servomotor with a Gear is high immediately after the Servomotor starts, and it then decreases and becomes stable after a few minutes. This is a common phenomenon caused by grease circulation in the gears and it does not indicate faulty gears.
- 3. Contact your Yaskawa representative for information on Servomotor with Gears with a rated output of 1.5 kW or higher.
- 4. Other specifications are the same as those for Servomotors without Gears.



The SERVOPACK speed control range is 5,000:1. If you use Servomotors at extremely low speeds (0.02 min⁻¹ or lower at the gear output shaft), if you use Servomotors with a one-pulse feed reference for extended periods, or under some other operating conditions, the gear bearing lubrication may be insufficient. That may cause deterioration of the bearing or increase the load ratio. Contact your Yaskawa representative if you use a Servomotor under these conditions.

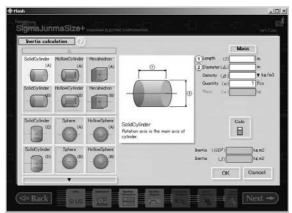
	Mor	nent of Iner	tia [×10 ⁻⁴ k	g∙m²]		With Gears		
Servomotor Model SGM7A-	Shaft Motor*	Output	Flange Motor*	Output	Allowable Radial	Allowable Thrust	ĻĻĘ	Reference Diagram
	+ Gear	Gear	+ Gear	Gear	Load [N]	Load [N]	[mm]	
A5ADAH1D	0.0277	0.006	0.0267	0.005	95	431	37	
A5ADAH2D	0.0247	0.003	0.0247	0.003	113	514	37	
A5ADAHCD	0.0257	0.004	0.0257	0.004	146	663	37	
A5ADAH7D	0.0667	0.045	0.0667	0.045	267	1246	53	
01A D AH1 D	0.0397	0.006	0.0387	0.005	95	431	37	
	0.0937	0.060	0.0927	0.059	192	895	53	
	0.0837	0.050	0.0837	0.050	233	1087	53	
01A D AH7 D	0.0987	0.065	0.0977	0.064	605	2581	75	
C2ADAH1D	0.0518	0.006	0.0508	0.005	95	431	37	
C2ADAHBD	0.106	0.060	0.105	0.059	192	895	53	Shaft Output
C2ADAHCD	0.156	0.110	0.154	0.108	528	2254	75	
C2ADAH7D	0.111	0.065	0.110	0.064	605	2581	75	
02A D AH1 D	0.346	0.207	0.340	0.201	152	707	53	Radial load
02ADAHBD	0.332	0.193	0.331	0.192	192	895	53	Thrust load
02ADAHCD	0.629	0.490	0.627	0.488	528	2254	75	
02A D AH7 D	0.589	0.450	0.588	0.449	605	2581	75	
04ADAH1D	0.423	0.207	0.417	0.201	152	707	53	
04ADAHBD	0.786	0.570	0.776	0.560	435	1856	75	Flange Output
04ADAHCD	0.706	0.490	0.704	0.488	528	2254	75	
04ADAH7D	0.836	0.620	0.826	0.610	951	4992	128	
06A D AH1 D	1.02	0.700	0.975	0.660	343	1465	75	Radial load
	0.885	0.570	0.875	0.560	435	1856	75	│ -┤┼╫╢ ╉┵-╍
06ADAHCD	1.16	0.840	1.14	0.820	830	4359	128	Thrust load
06A D AH7 D	0.935	0.620	0.925	0.610	951	4992	128	
08A D AH1 D	1.48	0.700	1.44	0.660	343	1465	75	
	1.38	0.600	1.37	0.590	435	1856	75	
	3.78	3.00	3.76	2.98	830	4359	128	
08A D AH7 D	3.58	2.80	3.57	2.79	951	4992	128]
10A D AH1 D	1.67	0.700	1.63	0.660	343	1465	75]
	4.37	3.40	4.31	3.34	684	3590	128	
	3.97	3.00	3.95	2.98	830	4359	128	
10A D AH7 D	3.77	2.80	3.76	2.79	951	4992	128	


* The moment of inertia for the Servomotor and gear is the value without a holding brake. You can calculate the moment of inertia for a Servomotor with a Gear and Holding Brake with the following formula.

Motor moment of inertia for a Servomotor with a Holding Brake from *Ratings of Servomotors without Gears* (page 26) + Moment of inertia for the gear from the above table.

Servomotor Overload Protection Characteristics

The overload detection level is set for hot start conditions with a Servomotor surrounding air temperature of 40°C.


Note: The above overload protection characteristics do not mean that you can perform continuous duty operation with an output of 100% or higher. Use the Servomotor so that the effective torque remains within the continuous duty zone given in *Torque-Motor Speed Characteristics* on page 27 or in *Torque-Motor Speed Characteristics for Three-phase, 200 V* on page 29.

Load Moment of Inertia

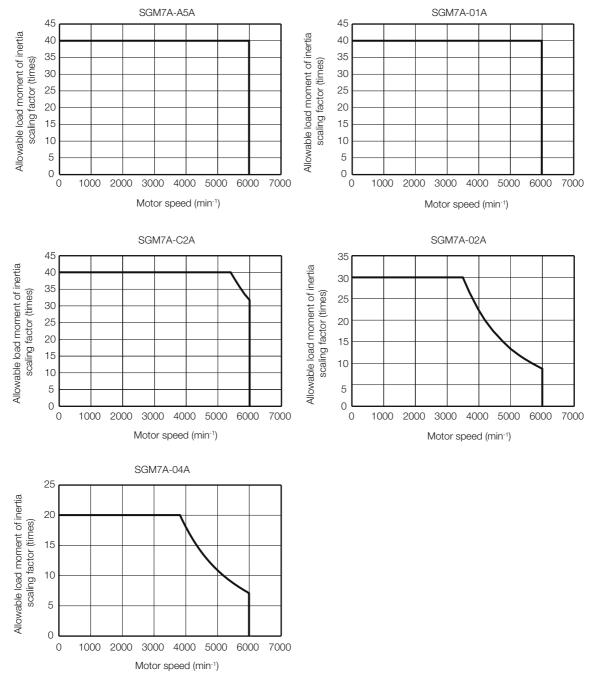
The load moment of inertia indicates the inertia of the load. The larger the load moment of inertia, the worse the response. If the moment of inertia is too large, operation will become unstable.

The allowable size of the load moment of inertia (J_L) for the Servomotor is restricted. Refer to *Ratings of Servomotors without Gears* on page 26 or to *Servomotor Ratings* on page 28. This value is provided strictly as a guideline and results depend on Servomotor driving conditions.

Use the SigmaJunmaSize+ AC Servo Drive Capacity Selection Program to check the driving conditions. Contact your Yaskawa representative for information on this program.

An Overvoltage Alarm (A.400) is likely to occur during deceleration if the load moment of inertia exceeds the allowable load moment of inertia. SERVOPACKs with a built-in regenerative resistor may generate a Regenerative Overload Alarm (A.320). Perform one of the following steps if this occurs.

- Reduce the torque limit.
- Reduce the deceleration rate.
- Reduce the maximum motor speed.
- Install an External Regenerative Resistor if the alarm cannot be cleared using the above steps.


Regenerative resistors are not built into SERVOPACKs for 400-W Servomotors or smaller Servomotors. Even for SERVOPACKs with built-in regenerative resistors, an External Regenerative Resistor is required if the energy that results from the regenerative driving conditions exceeds the allowable loss capacity (W) of the built-in regenerative resistor.

Allowable Load Moment of Inertia Scaling Factor for SERVO-PACKs without Built-in Regenerative Resistors

The following graphs show the allowable load moment of inertia scaling factor of the motor speed for SERVOPACKs* without built-in regenerative resistors when an External Regenerative Resistor is not connected.

If the Servomotor exceeds the allowable load moment of inertia, an overvoltage alarm may occur in the SERVOPACK.

These graphs provide reference data for deceleration at the rated torque or higher with a 200-VAC power supply input.

* Applicable SERVOPACK models: SGD7S-R70A, -R90A, -1R6A, or -2R8A

Servomotor Heat Dissipation Conditions

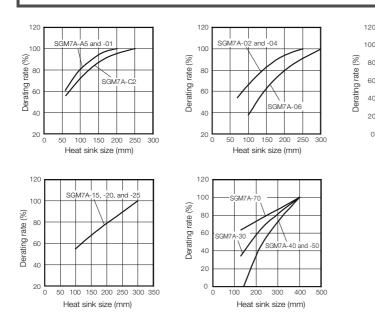
The Servomotor ratings are the continuous allowable values at a surrounding air temperature of 40°C when a heat sink is installed on the Servomotor. If the Servomotor is mounted on a small device component, the Servomotor temperature may rise considerably because the surface for heat dissipation becomes smaller. Refer to the following graphs for the relation between the heat sink size and derating rate.

Note: The derating rates are applicable only when the average motor speed is less than or equal to the rated motor speed. If the average motor speed exceeds the rated motor speed, consult with your Yaskawa representative.

The actual temperature rise depends on how the heat sink (i.e., the Servomotor mounting section) is attached to the installation surface, what material is used for the Servomotor mounting section, and the motor speed. Always check the Servomotor temperature with the actual equip-Important ment.

SGM7A-08

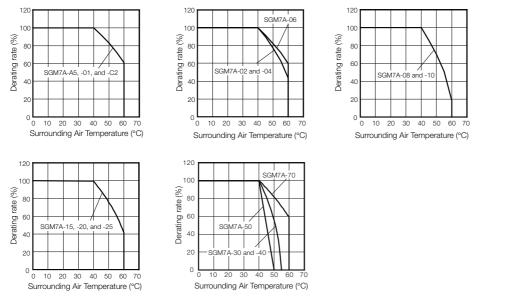
0 **L** 50


100

150 200 250

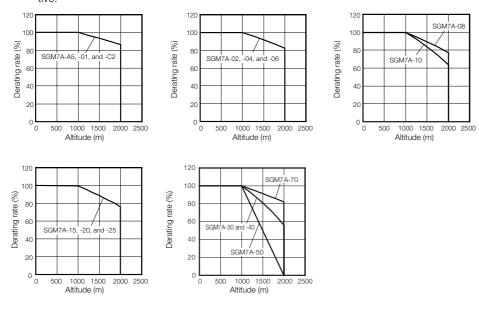
Heat sink size (mm)

300


350

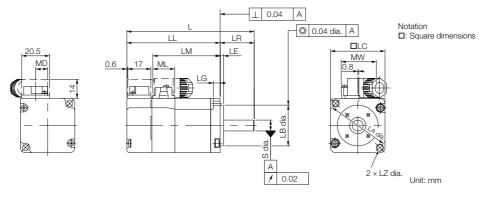
Applications Where the Surrounding Air Temperature of the Servomotor Exceeds 40°C

The Servomotor ratings are the continuous allowable values at a surrounding air temperature of 40°C. If you use a Servomotor at a surrounding air temperature that exceeds 40°C (60°C max.), apply a suitable derating rate from the following graphs.


Note: The derating rates are applicable only when the average motor speed is less than or equal to the rated motor speed. If the average motor speed exceeds the rated motor speed, consult with your Yaskawa representative.

Applications Where the Altitude of the Servomotor Exceeds 1,000 m

The Servomotor ratings are the continuous allowable values at an altitude of 1,000 m or less. If you use a Servomotor at an altitude that exceeds 1,000 m (2,000 m max.), the heat dissipation effect of the air is reduced. Apply the appropriate derating rate from the following graphs.

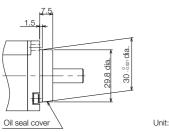

Note: The derating rates are applicable only when the average motor speed is less than or equal to the rated motor speed. If the average motor speed exceeds the rated motor speed, consult with your Yaskawa representative.

External Dimensions

Servomotors without Gears

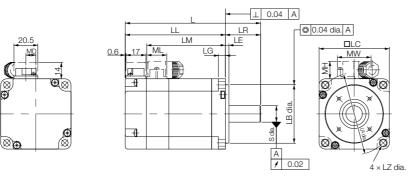
◆ SGM7A-A5, -01, and -C2

Model SGM7A-	1	LL	LM Flange Dimensions			S					
	L .			LR	LE	LG	LC	LA	LB	LZ	
A5A0A20	81.5 (122)	56.5 (97)	37.9	25	2.5	5	40	46	30 0 -0.021	4.3	8 -0.009
01A D A2D	93.5 (134)	68.5 (109)	49.9	25	2.5	5	40	46	30 _0.021	4.3	8 -0.009
C2ADA2D	105.5 (153.5)	80.5 (128.5)	61.9	25	2.5	5	40	46	30 _0.021	4.3	8 .0.009


Model SGM7A-	MD	MW	ML	Approx. Mass [kg]
	8.8	25.8	16.1	0.3 (0.6)
	8.8	25.8	16.1	0.4 (0.7)
C2ADA2D	8.8	25.8	16.1	0.5 (0.8)

Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

2. Refer to the following section for detailed shaft end specifications. ■ Shaft End Specifications for SGM7A-A5 to -10 (page 39)


Specifications of Options

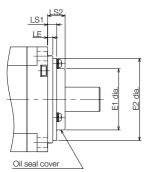
• Oil Seal

Unit: mm

♦ SGM7A-02 to -10

Model SGM7A-	L	LL	LM	Flange Dimensions							S
Woder Scivit A-	L	LL		LR	LE	LG	LC	LA	LB	LZ	5
	99.5 (140)	69.5 (110)	51.2	30	3	6	60	70	50 0 -0.025	5.5	14 ⁰ -0.011
04A D A2D	115.5 (156)	85.5 (126)	67.2	30	3	6	60	70	50 .0.025	5.5	14 ⁰ _{-0.011}
06A□A2□	137.5 (191.5)	107.5 (161.5)	89.2	30	3	6	60	70	50 ⁰ -0.025	5.5	14 ⁰ -0.011
08A□A2□	137 (184)	97 (144)	78.5	40	3	8	80	90	70 -0.030	7	19 ⁰ _{-0.013}
10A D A2D	162 (209)	122 (169)	103.5	40	3	8	80	90	70 .0.030	7	19 ⁰ -0.013

Unit: mm


Model SGM7A-	MD	MW	MH	ML	Approx. Mass [kg]
02A□A2□	8.5	28.7	14.7	17.1	0.8 (1.4)
04A□A2□	8.5	28.7	14.7	17.1	1.2 (1.8)
06A□A2□	8.5	28.7	14.7	17.1	1.6 (2.2)
08A□A2□	13.6	38	14.7	19.3	2.3 (2.9)
10A□A2□	13.6	38	14.7	19.3	3.1 (3.7)

Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

2. Refer to the following section for detailed shaft end specifications.

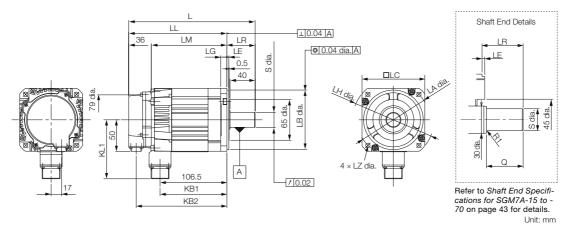
Specifications of Options

• Oil Seal

Unit: mm

Model SGM7A-	Dimensions with Oil Seal									
	E1	E2	LS1	LS2						
02A, 04A, 06A	35	47	5.2	10						
08A, 10A	47	61	5.5	11						

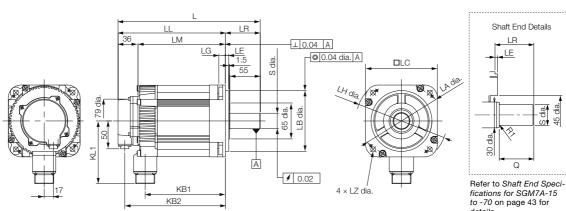
Shaft End Specifications for SGM7A-A5 to -10


♦ SGM7A-□□□□□□□

Code	Specification
2	Straight without key
6	Straight with key and tap for one location (Key slot is JIS B1301-1996 fastening type.)
В	With two flat seats

Shaft End Details				Servon	notor N	lodel S	GM7A	-		
		A5	01	C2	02	04	06	08	10	
Code: 2 (Straight without Key)	-	1						1		
	LR		25			30		40		
	S		8 -0.009		14 ⁰ _{-0.011}			19 _{-0.013}		
Code: 6 (Straight with Key and Tap)										
LR .	LR		25			30		4	0	
	QK		14			14			22	
	S	8 -0.009			14 ⁰ _{-0.011}			19	0 -0.013	
	W		3		5			6	6	
	Т		3			5		6 3.5		
	U		1.8			3				
	Р	1	VI3 × 61	_	M5 × 8L			M6 × 10L		
Code: B (with Two Flat Seats)										
r LR r	LR		25			30		4	0	
QH	QH		15			15		2	2	
	S		8 -0.009			14 ⁰ _{-0.011}		19	0 -0.013	
	H1		7.5			13		1	8	
Y ♂ Cross section Y-Y	H2		7.5			13		18		

Servomotors without Gears and without Holding Brakes


◆ SGM7A-15, -20, and -25

Model SGM7A-	L	LL	LM	LR	KB1	KB2	KL1
15A□A21	202	157	121	45	107	145	94
20A□A21	218	173	137	45	123	161	94
25A0A21	241	196	160	45	146	184	94

Model SGM7A-		F	lange	Dimens	sions			Shaft End Di	mensions	Approx.
	LA	LB	LC	LE	LG	LH	LZ	S	Q	Mass [kg]
15A D A21	115	95 ⁰ -0.035	100	3	10	130	7	24 _{-0.013}	40	4.6
20A□A21	115	95 ⁰ -0.035	100	3	10	130	7	24 .0.013	40	5.4
25A D A21	115	95 ⁰ -0.035	100	3	10	130	7	24 _{-0.013}	40	6.8

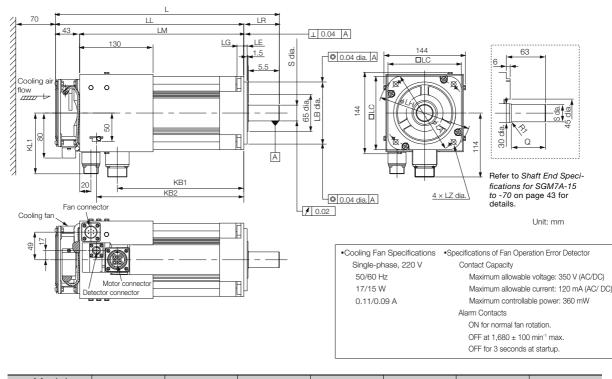
Note: Servomotors with Oil Seals have the same dimensions.

◆ SGM7A-30, -40, and -50

details. Unit: mm

S dia. 45 dia.

Model SGM7A-	L	LL	LM	LR	KB1	KB2	KL1
30A□A21	257	194	158	63	145	182	114
40A□A21	296	233	197	63	184	221	114
50A D A21	336	273	237	63	224	261	114


Model SGM7A-			Flange	Dimens	Shaft End Di	Approx.				
	LA	LB	LC	LE	LG	LH	LZ	S	Q	Mass [kg]
30ADA21	145	110 -0.035	130	6	12	165	9	28 .0.013	55	10.5
40ADA21	145	110 -0.035	130	6	12	165	9	28 -0.013	55	13.5
50ADA21	145	110 -0.035	130	6	12	165	9	28 .0.013	55	16.5

Note: Servomotors with Oil Seals have the same dimensions.

Refer to the following section for information on connectors.

■ SGM7A-15 to -50 without Holding Brakes (page 50)

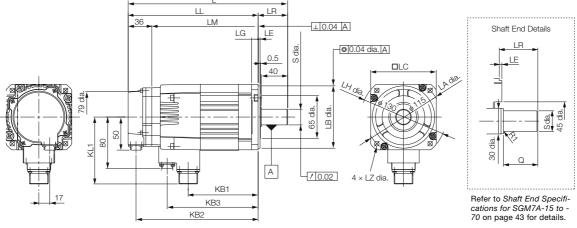
◆ SGM7A-70

Model SGM7A-	L	LL	LM	LR	KB1	KB2	KL1
70ADA21	397	334	291	63	224	261	108
					Shaf	t End Dimon-	

Model SGM7A-		I	Flange D		· · · ·	d Dimen- ons	Approx. Mass [kg]			
SGIVITA-	LA	LB	LC	LE	LG	LH	LZ	S	Q	iviass [kg]
70A□A21	145	110 ⁰ -0.035	130	6	12	165	9	28 .0.013	55	18.5

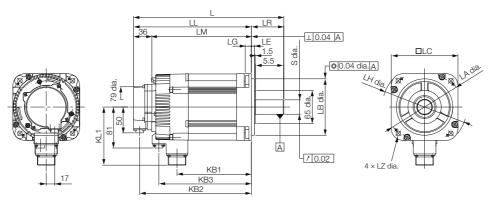
* Leave a minimum space of 70 mm around the Servomotor from walls and other equipment to allow for a sufficient amount of cooling air.

Note: Servomotors with Oil Seals have the same dimensions.


Refer to the following section for information on connectors.

■ SGM7A-70 without Holding Brakes (page 50)

Servomotors without Gears and with Holding Brakes


♦ SGM7A-15 to -50

• SGM7A-15 to -25

Unit: mm

• SGM7A-30 to -50

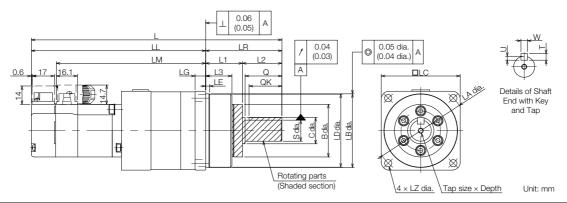
Model SGM7A-	L	LL	LM	LR	KB1	KB2	KB3	KL1
15A D A2C	243	198	162	45	107	186	139	102
20ADA2C	259	214	178	45	123	202	155	102
25ADA2C	292	247	211	45	156	225	188	102
30ADA2C	293	232	196	63	145	220	181	119
40ADA2C	332	269	233	63	184	257	220	119
50ADA2C	372	309	273	63	224	297	260	119

Model		F	lange D	imensio	Shaft End Di	Approx.				
SGM7A-	LA	LB	LC	LE	LG	LH	LZ	S	Q	Mass [kg]
15A D A2C	115	95 -0.035	100	3	10	130	7	24 _{-0.013}	40	6.0
20ADA2C	115	95 -0.035	100	3	10	130	7	24 _{-0.013}	40	6.8
25ADA2C	115	95 -0.035	100	3	10	130	7	24 _{-0.013}	40	8.7
30A□A2C	145	110 ⁰ -0.035	130	6	12	165	9	28 -0.013	55	13
40ADA2C	145	110 ⁰ -0.035	130	6	12	165	9	28 .0.013	55	16
50ADA2C	145	110 ⁰ -0.035	130	6	12	165	9	28 .0.013	55	19

Note: Servomotors with Oil Seals have the same dimensions.

Refer to the following section for information on connectors. *SGM7A-15 to -50 with Holding Brakes* (page 51)

Shaft End Specifications for SGM7A-15 to -70

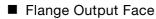

♦ SGM7A-□□□□□□□

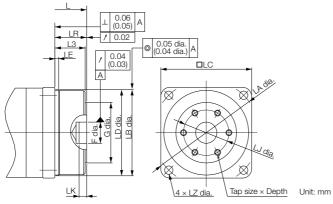
Code	Specification
2	Straight without key
6	Straight with key and tap for one location (Key slot is JIS B1301-1996 fastening type.)

Shaft End Details	Servomotor Model SGM7A-										
Shart End Details		15	20	25	30	40	50	70			
Code: 2 (Straight without Key)											
	LR		45		63						
	Q		40		55						
	S		24 _{-0.013}		28 ⁰ _{-0.013}						
Code: 6 (Straight with Key and	Tap)										
	LR		45		63						
	Q		40		55						
	QK		32		50						
	S		24 -0.013		28 ⁰ _{-0.013}						
	W	8									
	Т	7									
	U	4									
	Р										

Servomotors with Gears

◆ SGM7A-A5, -01, and -C2


Model SGM7A-	Gear	L		L	1	LM				Fla	ange Dimensions						
model camin	Ratio				-		LR	LE	LG	В	LD		LB	LC	LA	LZ	
A5A□AH1 ₪□	1/5		138 (178.5)		6	77.4											
A5A□AH2∎□	1/9		-	(136	,		42	2.2	5	29	39.5	5 40) _{-0.025}	40	46	3.4	
A5A□AHC ▮□	1/21	147 (187.		105 (145.5)		86.4											
A5A□AH7 🗷 🗆	1/33	178. (219)	120.5 (161)		101.9	58	2.5	8	40	55.8	5 56	3 _{-0.030}	60	70	5.5	
01A□AH1 🗷 🗆	1/5	150 (190.		108 (148.5)		89.4	42	2.2	5	29	39.5	5 40) _{-0.025}	40	46	3.4	
01A□AHB⊮□	1/11		190.5 132			113.9	58	2.5	8	40	55.5	5 50	5 ⁰ -0.030	60	70	5.5	
01A□AHC ID	1/21	(231)	(231) (1		'3)	110.9	50	2.0	0	40	00.0	5 50	J -0.030	00	10	0.0	
01A □ AH7 ⊠ □	1/33	215 (255.		135 (175.5)		116.4	80	7.5	10	59	84	8	5 ⁰ -0.035	90	105	9	
C2A□AH1 ₪□	1/5	162 (210)		120 (168)		101.4	42	2.2	5	5 29		5 40	D _{-0.025}	40	46	3.4	
C2ADAHB	1/11	202.5 (250.5		144.5 (192.5)		125.9	58	2.5	8	8 40		5 56	3 _{-0.030}	60	70	5.5	
C2A□AHC II□	1/21	227 14 (275) (198					80	75	7.5 10		84	01	85 ⁰ -0.035		105	9	
C2A□AH7 IN□	1/33			95)	120.4	80	7.5	04			00 -0.035		90		9		
	Flange Dimensions			•		-	Ta	ap Siz	Ke	y Din	nensio	ons	ns Approx.				
Model SGM7A-	L1	L2		L3 Q C S		S		Dept	QK	U W T			Mass [kg]				
A5A□AH1 🗷 🗆									M3 × 6L						0.	.6	
A5A□AH2∎□	22	20	20 14		_		10 .0.0	15			15	2.5	2.5 4	4	(0.9)		
A5A□AHC I □				-				10	,						0.7 (1.0)		
A5A□AH7 🗷 🗆	28	30		20	28	20	16 -0.0	18	$M4 \times 8L$		25	3 5		5	1.3 (1.6)		
01A□AH1 🗷 🗆	22	20	1	4.6 –		-	10 -0.0	15	$M3 \times 6L$		15	2.5	5 4 4		0.7 (1.0)		
01A□AHB⊮□	28	30		00 00		20	16 .0.0		$M4 \times 8L$		25	3	5	5	1.	.4	
01A□AHC⊮□	20	30		20 28		20	20 16 -0.0		IVI4 X OL		20	3	5	Э	(1.	,	
01A□AH7 I □	36	44		26	42	32	25 -0.0	21 N	M6 × 12L		36	4	8	7	2. (3.	.8 .1)	
				4.6 –					$M3 \times 6L$		15	2.5	4	4	0.	.8	
C2A□AH1 IB□	22	20	1	4.6	-	-	10 -0.0	15		JL	15	2.0	4	4	(1.	.1)	
C2A□AH1 🗷 □ C2A□AHB 🗷 □	22 28	20 30		4.6 20	- 28	20	10 -0.0 16 -0.0		M4 × 8	-	25	3	5	4 5	1.	.1) .5 .8)	

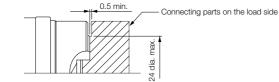

* The asterisk (*) is replaced by shaft end code 6 (straight with key and tap) for the 8th digit of the model designation.

If a key and tap are not necessary, specify shaft end code 2 (without key and tap).

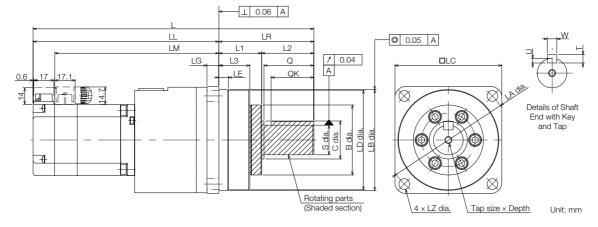
Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

2. Gear dimensions are different from those of the $\Sigma,$ $\Sigma\text{-II},$ and $\Sigma\text{-III}$ Series.

Note: The geometric tolerance in parentheses is the value for LC = 40.


Model SGM7A-	Gear Ratio	L	LR	LJ	F	G	LK	No. of Taps \times Tap Size \times Depth	Approx. Mass [kg]
A5ADAH10D	1/5	111							
A5ADAH20D	1/9	(151.5)	15	18	5 +0.012	24	3	$3 \times M4 \times 6L$	0.6
A5ADAHC0D	1/21	120 (160.5)	10	10	0.0	27	0		(0.9)
A5A0AH700	1/33	141.5 (182)	21	30	14 ^{+0.018}	40	5	$6 \times M4 \times 7L$	1.2 (1.5)
01A□AH10□	1/5	123 (163.5)	15	18	5 +0.012	24	3	$3 \times M4 \times 6L$	0.7 (1.0)
	1/11	153.5	21	30	14 ^{+0.018}	40		$3 \times M4 \times 7L$	1.3
	1/21	(194)	21	00	14 0	40	5	5 × 1014 × 7 L	(1.6)
01A D AH70 D	1/33	162 (202.5)	27	45	24 +0.021	59	0	$6 \times M6 \times 10L$	2.4 (2.7)
02A□AH10□	1/5	135 (183)	15	18	5 +0.012	24	3	$3 \times M4 \times 6L$	0.8 (1.1)
	1/11	165.5 (213.5)	21	30	14 ^{+0.018}	40	5	$6 \times M4 \times 7L$	1.4 (1.7)
02AOAHCOO	1/21	174	27	45	24 ^{+0.021}	59	5	$6 \times M6 \times 10L$	2.5
02A□AH70□	1/33	(222)	21	40	∠4 ₀	09	5		(2.8)

Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

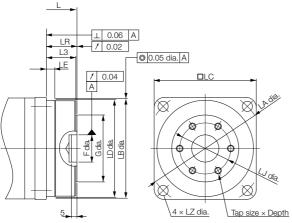

2. Dimensions not found in the above table are the same as those in the table on the previous page.

For a Servomotor with a flange output that has square gear flange dimensions (\square LC) of 40 mm, we recommend that you design the Servomotor with the dimensions shown in the following figure in order to secure a gap between the gear oil seal and the connecting parts on the load side.

◆ SGM7A-02, -04, and -06

Model SGM7A-	Gear	L	LL	LM				Fla	nge Din	nensions			
Model ScimrA-	Ratio	L	LL		LR	LE	LG	В	LD	LB	LC	LA	LZ
02A🗖 AH1 🗷 🗖	1/5	191.5	133.5	115.2	58	2.5	8	40	55.5	56 .0.030	60	70	5.5
02A D AH2 🗷 🗖	1/11	(232)	(174)	110.2	50	2.0	0	10	55.5	50 -0.030	00	10	0.0
02A□AHC 🗷 🗆	1/21	220.5	140.5	122.2	80	7.5	10	59	84	85 -0.035	90	105	9
02A D AH7 🗷 🗖	1/33	(261)	(181)	122.2	00	7.5	10	55	04	OJ -0.035	30	100	3
04ADAH1 🗷 🗆	1/5	207.5 (248)	149.5 (190)	131.2	58	2.5	8	40	55.5	56 -0.030	60	70	5.5
04A D AHB N	1/11	236.5	156.5	138.2	80	7.5	10	59	84	85 -0.035	90	105	9
	1/21	(277)	(197)	100.2	00	7.5	10	55	04	OJ -0.035	30	100	3
04A□AH7 🗷 🗆	1/33	322.5 (363)	189.5 (230)	171.2	133	12.5	13	84	114	115 ⁰ -0.035	120	135	11
06A D AH1 🗷 🗖	1/5	258.5	178.5	160.2	80	7.5	10	59	84	85 .0.035	90	105	9
06A□AHB 🗷 🗆	1/11	(312.5)	(232.5)	100.2	00	1.5	10	39	04	00 -0.035	30	100	3
06A□AHC 🗷 🗆	1/21	344.5	211.5	193.2	133	12.5	13	84	114	115 ⁰ -0.035	120	135	11
06A D AH7 🗷 🗖	1/33	(398.5)	(265.5)	190.2	100	12.0	13	04	114	110 -0.035	120	100	

Model SGM7A-	Flang	e Dimer	nsions	Q	С	S	Tap Size $ imes$	K	ey Din	nensior	าร	Approx.
Model Scivit A-	L1	L2	L3	Q	U	3	Depth	QK	U	W	Т	Mass [kg]
02ADAH1 🗷 🗖	28	30	20	28	20	16 ⁰ -0.018	$M4 \times 8L$	25	3	5	5	1.8 (2.4)
02A□AH2 🗷 🗆	20	50	20	20	20	10 -0.018	WI4 X OL	20	0	0	0	1.9 (2.5)
02A□AHC 🗷 🗆	36	44	26	42	32	25 .0.021	M6 x 12L	36	4	8	7	3.7
02A D AH7 🗷 🗖	50	44	20	42	02	20 -0.021	WIO × TZE	50	4	0	1	(4.3)
04A□AH1 🗷 🗆	28	30	20	28	20	16 ⁰ -0.018	$M4 \times 8L$	25	3	5	5	2.1 (2.7)
04A D AHB N	36	44	26	42	32	25 .0.021	M6 × 12L	36	4	8	7	4.0
	- 30	44	20	42	52	20 .0.021	WIO X 12L	30	4	0	1	(4.6)
04A□AH7 🗷 🗆	48	85	33	82	44	40 -0.025	M10 × 20L	70	5	12	8	8.6 (9.2)
06A□AH1 🗷 🗆	36	44	26	42	32	25 ⁰ -0.021	M6 × 12L	36	4	8	7	4.3 (4.9)
06A D AHB BD	00	44	20	42	02	∠0 -0.021	WIO A 12L	00	4	0	1	4.5 (5.1)
06A□AHC 🗷 🗆	48	85	33	82	44	40 .0.025	M10 × 20L	70	5	12	8	9.1
06A□AH7 🗷 🗆	40	00		02	44	40 _{-0.025}	WITO X ZUL	10	5	12	0	(9.7)

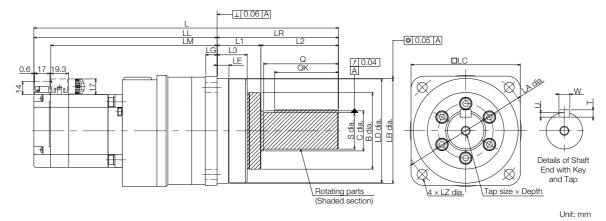

* The asterisk (*) is replaced by shaft end code 6 (straight with key and tap) for the 8th digit of the model designation.

If a key and tap are not necessary, specify shaft end code 2 (without key and tap).

Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

2. Gear dimensions are different from those of the $\Sigma,$ $\Sigma\text{-II},$ and $\Sigma\text{-III}$ Series.

■ Flange Output Face

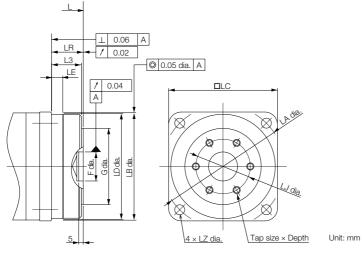

Model SGM7A-	Gear Ratio	L	LR	LJ	F	G	No. of Taps \times Tap Size \times Depth	Approx. Mass [kg]		
02A□AH10□	1/5	154.5	21	30	14 ^{+0.018}	40	$6 \times M4 \times 7L$	1.7 (2.3)		
02A0AH200	1/11	(195)	21	30	14 0	40	0 x 1014 x 7 L	1.8 (2.4)		
02ADAHC0D	1/21	167.5	27	AE	24 ^{+0.021}	FO	$6 \times M6 \times 10L$	3.3		
02A□AH70□	1/33	(208)	21	45	24 0	59	O X IVIO X TUL	(3.9)		
04A□AH10□	1/5	170.5 (211)	21	30	14 ^{+0.018}	40	$6 \times M4 \times 7L$	2.0 (2.6)		
	1/11	183.5	27	45	24 ^{+0.021}	59	$6 \times M6 \times 10L$	3.6		
	1/21	(224)	21	40	24 0	- 59	O X IVIO X TUL	(4.2)		
04A¤AH70¤	1/33	224.5 (265)	35	60	32 +0.025	84	6 × M8 × 12L	7.2 (7.8)		
06A□AH10□	1/5	205.5	27	45	24 ^{+0.021}	59	6 × M6 × 10l	3.9 (4.5)		
	1/11	(259.5)	21	40	24 0	39	U A WIU A TUL	4.1 (4.7)		
06ADAHC0D	1/21	246.5	35	60	32 +0.025	84	6 × M8 × 12L	7.7		
06A□AH70□	1/33	(300.5)				00	32 0	04	U X IVIO X IZL	(8.3)

Unit: mm

Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

2. Dimensions not found in the above table are the same as those in the table on the previous page.

◆ SGM7A-08 and -10


Model SGM7A-	Gear	L	LL		M	Flange Dimensions											
	Ratio	L	LL		VI	LR	LE	LG	В	LD		LB	LC	LA	LZ		
08A□AH1 🗷 🗆	1/5	255	175	156	3.5	80	7.5	10	59	84	0	5 _{-0.035}	90	105	9		
	1/11	(302)	(222)	100	5.0	00	1.5	10	55	04	0	J -0.035	30	105	9		
	1/21	334	201	182	2 5	133	12.5	13	84	114		5 .0.035	120	135	11		
08A□AH7 🗷 🗆	1/33	(381)	(248)	102	2.0	100	12.0	10	04	114		J -0.035	120	100	11		
10A□AH1團□	1/5	280 (327)	200 (247)	18-	1.5	80	7.5	10	59	84	8	5 _{-0.035}	90	105	9		
10A□AHB 🗷 🗆	1/11	0.50															
10A□AHC II □	1/21	359 (406)	226 (273)	207	7.5	133	12.5	13	84	114	11	5 _{-0.035}	120	135	11		
10A□AH7⊮□	1/33	(100)	(210)														
	Flange	e Dimen	sions					Tap S	izo v	Ke	v Din	nensior	าร	Appr	'nχ		
Model SGM7A-	L1	L2	L3	Q	С		S	Dep		QK	U	W	Т	Mass			
08A□AH1 🗷 🗆	- 36	44	26	42	32		5 ⁰ -0.021	M6 x	101	36	4	8	7	4.9 (5.8			
08A□AHB 🗷 🗆	- 30	44	20	42	02	- 20) -0.021		IZL	30	4	0	1	5. (6.			
	48	85	33	82	44	1 40)0	M10>	< 20I	70	5	12	8	9.8	8		
08A□AH7 🗷 🗆	40	00	00	02	44	+ 40	J -0.025		V ZUL	10	0	12	0	(10	.7)		
10A□AH1 I □	36	44	26	42	32	2 25	5 0 -0.021	$M6 \times$	12L	36	4	8	7	6.0 (6.			
10A□AHB 🗷 🗆														10			
10A□AHC II □	48	85	33	82	44	4 40) _{-0.025}	M10>	< 20L	70	5	12	8	10. (11.	-		
10A□AH7 I □														(- /		

* The asterisk (*) is replaced by shaft end code 6 (straight with key and tap) for the 8th digit of the model designation. If a key and tap are not necessary, specify shaft end code 2 (without key and tap).

Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

2. Gear dimensions are different from those of the $\Sigma,$ $\Sigma\text{-II},$ and $\Sigma\text{-III}$ Series.

■ Flange Output Face

Model SGM7A-	Gear Ratio	L	LR	LJ	F	G	No. of Taps \times Tap Size \times Depth	Approx. Mass [kg]
08ADAH10D	1/5	202	27	45	24 ^{+0.021}	59	6 × M6 × 10I	4.7 (5.3)
	1/11	(249)	21	40	24 0	09		4.9 (5.5)
	1/21	236	35	60	32 +0.025	84	6 × M8 × 12L	8.6
08AOAH70O	1/33	(283)	00	00	32 0	04	0 × 100 × 12L	(9.2)
10A□AH10□	1/5	227 (274)	27	45	24 +0.021	59	6 × M6 × 10L	5.6 (6.3)
10AOAHB0O	1/11	001						0 5
10ADAHC0D	1/21	261 (308)	35	60	32 +0.025	84	$6 \times M8 \times 12L$	9.5 (10.1)
10A D AH70 D	1/33	(000)						(10.1)

Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

2. Dimensions not found in the above table are the same as those in the table on the previous page.

Connector Specifications

SGM7A-15 to -50 without Holding Brakes

• Encoder Connector Specifications (24-bit Encoder)

Receptacle: CM10-R10P-D Applicable plug: Not provided by Yaskawa. Plug: CM10-AP10S-□-D for Right-angle Plug CM10-SP10S-□-D for Straight Plug (□ depends on the applicable cable size.) Manufacturer: DDK Ltd.

Servomotor Connector Specifications

Manufacturer: DDK Ltd.

- SGM7A-70 without Holding Brakes
- Encoder Connector Specifications (24-bit Encoder)

Receptacle: CM10-R10P-D Applicable plug: Not provided by Yaskawa. Plug: CM10-AP10S-□-D for Right-angle Plug CM10-SP10S-□-D for Straight Plug (□ depends on the applicable cable size.) Manufacturer: DDK Ltd.

Servomotor Connector Specifications

Manufacturer: DDK Ltd.

· Fan Connector Specifications

Receptacle: MS3102A14S-6P Applicable Plug Plug: MS3108B14S-6S Cable Clamp: MS3057-6A

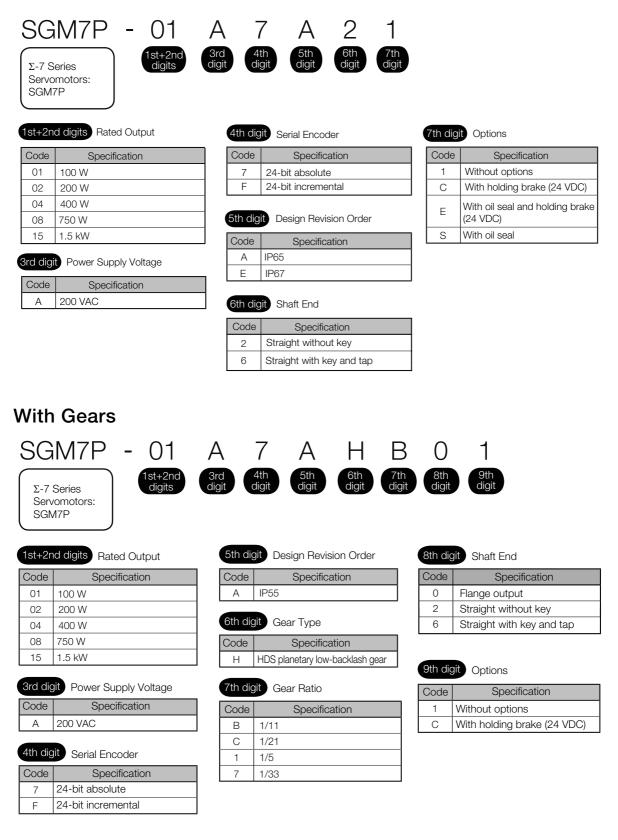
Note: The Servomotor Connector (receptacle) is RoHS compliant. Contact the connector manufacturer for RoHS-compliant cable-side connectors (not provided by Yaskawa).

◆ SGM7A-15 to -50 with Holding Brakes

• Encoder Connector Specifications (24-bit Encoder)

Receptacle: CM10-R10P-D Applicable plug: Not provided by Yaskawa. Plug: CM10-AP10S-□-D for Right-angle Plug CM10-SP10S-□-D for Straight Plug (□ depends on the applicable cable size.) Manufacturer: DDK Ltd.

Servomotor Connector Specifications

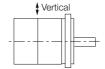


Manufacturer: Japan Aviation Electronics Industry, Ltd.

SGM7P

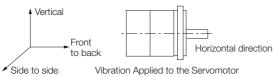
Model Designations

Without Gears


Specifications and Ratings

Specifications

	Voltage			200 V							
	Model SGM7P-	01A	02A	04A	08A	15A					
Time Rating				Continuous							
Thermal Class				В							
Insulation Resis	stance			VDC, 10 M Ω							
Withstand Volta	age	1,500 VAC for 1 minute									
Excitation				rmanent mag							
Mounting		Flange-mounted									
Drive Method				Direct drive							
Rotation Direct		Counterclockw	vise (CCW) for fo	rward reference	when viewed from	m the load side					
Vibration Class	*1	V15									
	Surrounding Air Temperature	0°C to 40°C									
				possible bet							
	Surrounding Air Humidity			e humidity (w							
Environmen- tal Conditions	Installation Site	gases. • Must be v • Must faci • Must hav usage is	well-ventilate litate inspect e an altitude possible bet	free of corros ad and free of tion and cleau of 1,000 m ween 1,000 r g magnetic fie	f dust and m ning. or less. (With m and 2,000	oisture. 1 derating,					
	Storage Environment	store it with Storage Te	n the power mperature: - ımidity: 20%	n the followin cable discon 20°C to 60°C to 80% relat	nected. C (with no fre	ezing)					
Shock	Impact Acceleration Rate at Flange			490 m/s ²							
Resistance*2	Number of Impacts			2 times							
Vibration Resistance ^{*3}	Vibration Acceleration Rate at Flange			49 m/s ²							
	SGD7S-	R90A	2F	8A	5R5A	120A					
Applicable SERVOPACKs	SGD7W-	1R6A*6, 2R8A*6 2R8A, 5R5A*6, 7R6A*6 5R5A, 7R6A -									


*1. A vibration class of V15 indicates a vibration amplitude of 15 µm maximum on the Servomotor without a load at the rated motor speed.

*2. The shock resistance for shock in the vertical direction when the Servomotor is mounted with the shaft in a horizontal position is given in the above table.

Shock Applied to the Servomotor

*3. The vertical, side-to-side, and front-to-back vibration resistance for vibration in three directions when the Servomotor is mounted with the shaft in a horizontal position is given in the above table. The strength of the vibration that the Servomotor can withstand depends on the application. Always check the vibration acceleration rate that is applied to the Servomotor with the actual equipment.

- *4. If the surrounding air temperature will exceed 40°C, refer to the following section.
- *5. If the altitude will exceed 1,000 m, refer to the following section.
- *6. If you use the Servomotor together with a Σ -7W SERVOPACK, the control gain may not increase as much as with a Σ -7S SERVOPACK and other performances may be lower than those achieved with a Σ -7S SERVOPACK.

	Voltage				200 V					
N	lodel SGM7P-		01A	02A	04A	08A	15A			
Rated Output*1		W	100	200	400	750	1500			
Rated Torque ^{*1, *2}		N∙m	0.318	0.637	1.27	2.39	4.77			
Instantaneous Max	ximum Torque ^{*1}	N∙m	0.955	1.91	3.82	7.16	14.3			
Rated Current*1		Arms	0.86	2.0	2.6	5.4	9.2			
Instantaneous Max	ximum Current ^{*1}	Arms	2.8	6.4	8.4	16.5	28.0			
Rated Motor Spee	ed*1	min ⁻¹			3000					
Maximum Motor S	peed ^{*1}	min ⁻¹			6000					
Torque Constant		N•m/Arms	0.401	0.355	0.524	0.476	0.559			
Motor Moment of	Inertia	×10 ⁻⁴ kg·m ²	0.0592 (0.0892)	0.263 (0.415)	0.409 (0.561)	2.10 (2.98)	4.02 (4.90)			
Rated Power Rate	*1	kW/s	17.1 (11.3)	15.4 (9.7)	39.6 (28.8)	27.2 (19.1)	56.6 (46.4)			
Rated Angular Acc	celeration Rate ^{*1}	rad/s ²	53700 (35600)	24200 (15300)	31100 (22600)	11400 (8020)	11900 (9730)			
Derating Rate for Ser	vomotor with Oil Seal	%	9	0		95				
Heat Sink Size		mm	2	$50 \times 250 \times$	6	300 × 3	00 × 12			
Protective Structu	re ^{*3}			Totally enclosed, self-cooled, IP65						
	Rated Voltage	V			24 VDC 0					
	Capacity	W	7.8	7.6	8.2	7.5	10			
	Holding Torque	N∙m	0.318	0.637	1.27	2.39	4.77			
Holding Brake	Coil Resistance	Ω (at 20°C)	71.6	74.2	70.9	58	57.6			
Specifications ^{*4}	Rated Current	A (at 20°C)	0.34	0.32	0.32	0.	31			
	Time Required to Release Brake	ms	20	4	0	2	0			
	Time Required to Brake	ms			100					
Allowable Load Mo Inertia Ratio)	ment of Inertia (Mot		25 times	15 times	10 times	5 times	5 times			
	With External Regenter tor and Dynamic Br					5				
	LF	mm	20	2	5	3	5			
Allowable Shaft Loads ^{*5}	Allowable Radial Load	Ν	78	24	15	392	490			
20003	Allowable Thrust Load	N	49	6	8	14	47			

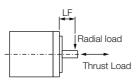
Ratings of Servomotors without Gears

Note: The values in parentheses are for Servomotors with Holding Brakes.

*1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. The values for other items are at 20°C. These are typical values.

*2. The rated torques are the continuous allowable torque values at a surrounding air temperature of 40°C with an aluminum heat sink of the dimensions given in the table.

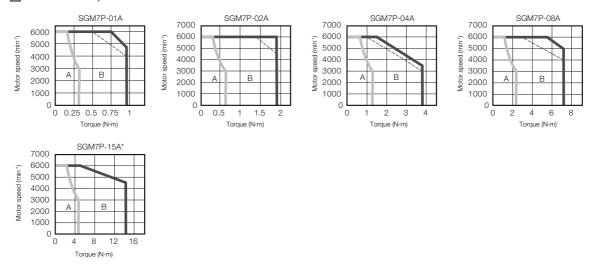
*3. This does not apply to the shaft opening. Protective structure specifications apply only when the special cable is used.


*4. Observe the following precautions if you use a Servomotor with a Holding Brake.

• The holding brake cannot be used to stop the Servomotor.

• The time required to release the brake and the time required to brake depend on which discharge circuit is used. Confirm that the operation delay time is appropriate for the actual equipment.

• The 24-VDC power supply is not provided by Yaskawa.


*5. The allowable shaft loads are illustrated in the following figure. Design the mechanical system so that the thrust and radial loads applied to the Servomotor shaft end during operation do not exceed the values given in the table.

Torque-Motor Speed Characteristics

 A : Continuous duty zone
 (solid lines): With three-phase 200-V or single-phase 230-V input

 B : Intermittent duty zone
 ------- (dotted lines): With single-phase 200-V input

* You cannot use the SGM7P-15A Servomotor together with a SERVOPACK with a single-phase power supply input.

- Note: 1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. These are typical values.
 - 2. The characteristics in the intermittent duty zone depend on the power supply voltage.
 - 3. If the effective torque is within the allowable range for the rated torque, the Servomotor can be used within the intermittent duty zone.
 - 4. If you use a Servomotor Main Circuit Cable that exceeds 20 m, the intermittent duty zone in the torquemotor speed characteristics will become smaller because the voltage drop increases.

	G	Gear Me	chanism		Protec	tive Str	ructure	Lost Mo	tion [arc	-min]	
All Models	Plane	tary gea	r mecha	nism	,	,	elf-cooled, aft opening)	3	max.		
			Servom	otor			G	ear Output			
Servomotor Model SGM7P-	Rated Output [W]	Rated Motor Speed [min ⁻¹]	Maxi- mum Motor Speed [min ⁻¹]	Rated Torque [N·m]	Instanta- neous Maxi- mum Torque [N·m]	Gear Ratio	Rated Torque/ Efficiency ^{*1} [N·m/%]	Instanta- neous Maxi- mum Torque [N·m]	Rated Motor Speed [min ⁻¹]	Maxi- mum Motor Speed [min ⁻¹]	
						1/5	1.06/78 ^{*2}	4.30	600	1200	
	100	3000	6000	0.31	0.955	1/11	2.52/72	9.30	273	545	
	100	0000	0000	8	0.000	1/21	5.34/80	18.2	143	286	
01ADAH7D						1/33	7.35/70	27.0	91	182	
02A□AH1□						1/5	2.39/75	8.60	600	1200	
	200	3000	6000	0.63	1.91	1/11	5.75/82	19.4	273	545	
	200	3000	6000	7	1.91	1/21	10.2/76	35.9	143	286	
02ADAH7D						1/33	17.0/81	57.3	91	182	
04ADAH1D						1/5	5.35/84	17.8	600	1200	
	400	3000	6000	1.27	3.82	1/11	11.5/82	38.3	273	545	
	400	3000	0000	1.27	0.02	1/21	23.0/86	74.4	143	286	
04ADAH7D						1/33	33.9/81	114.6	91	182	
08A□AH1□						1/5	10.0/84	32.8	600	1200	
	750	3000	6000	2.39	7.16	1/11	23.1/88	70.9	273	545	
	750	3000	0000	2.09	7.10	1/21	42.2/84	138.0	143	286	
08ADAH7D						1/33	69.4/88	220	91	182	
15A0AH10						1/5	19.1/80	64.8	600	1200	
15AOAHBO	1500	0000	0000	4 77	14.0	1/11	45.6/87	146	273	545	
	1500	3000	6000	4.77	7 14.3	7 14.3	1/21	86.1/86	278	95 ^{*3}	214 ^{*4}
15A0AH70						1/33	140/89	443	60 ^{*3}	136 ^{*4}	

Ratings of Servomotors with Gears

*1. The gear output torque is expressed by the following formula.

Gear output torque = Servomotor output torque × $\frac{1}{\text{Gear ratio}}$ × Efficiency

The gear efficiency depends on operating conditions such as the output torque, motor speed, and temperature. The values in the table are typical values for the rated torque, rated motor speed, and a surrounding air temperature of 25°C. They are reference values only.

- *2. Use the Servomotor at an effective load ratio of 85% or less. The values in the table take the effective load ratio into consideration.
- *3. The rated motor speed calculated at the motor shaft is 2,000 min⁻¹ max.

*4. The maximum motor speed calculated at the motor shaft is 4,500 min⁻¹ max.

- Note: 1. The gears that are mounted to Yaskawa Servomotors have not been broken in.
 - Break in the Servomotor if necessary. First, operate the Servomotor at low speed with no load. If no problems occur, gradually increase the speed and load.
 - 2. The no-load torque for a Servomotor with a Gear is high immediately after the Servomotor starts, and it then decreases and becomes stable after a few minutes. This is a common phenomenon caused by grease circulation in the gears and it does not indicate faulty gears.
 - 3. Other specifications are the same as those for Servomotors without Gears.

The SERVOPACK speed control range is 5,000:1. If you use Servomotors at extremely low speeds (0.02 min⁻¹ or lower at the gear output shaft), if you use Servomotors with a one-pulse feed reference for extended periods, or under some other operating conditions, the gear bearing lubrication may be insufficient. That may cause deterioration of the bearing or increase the load ratio. Contact your Yaskawa representative if you use a Servomotor under these conditions.

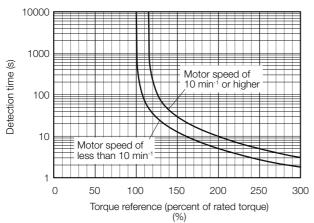
	Momen	t of Iner	tia [×10 ⁻⁴	kg∙m²]	With Low-	Backlash	Gears	
Servomotor	Shaft C	Dutput	Flange	Output	Allow-	Allow-		
Model SGM7P-	Motor* + Gear	Gear	Motor* + Gear	Gear	able Radial Load [N]	able Thrust Load [N]	LF [mm]	Reference Diagram
	0.0642	0.005	0.0627	0.004	95	431	37	
	0.119	0.060	0.118	0.059	192	895	53	
	0.109	0.050	0.108	0.050	233	1087	53	
01ADAH7D	0.509	0.450	0.508	0.449	605	2581	75	
02A0AH10	0.470	0.207	0.464	0.201	152	707	53	Shaft Output
	0.456	0.193	0.455	0.192	192	895	53	LF 4 ►
	0.753	0.490	0.751	0.488	528	2254	75	
02A0AH70	0.713	0.450	0.712	0.449	605	2581	75	
04ADAH1D	0.616	0.207	0.610	0.201	152	707	53	Thrust load
	0.979	0.570	0.969	0.560	435	1856	75	
	0.899	0.490	0.897	0.488	528	2254	75	Flange Output
04ADAH7D	1.02	0.620	1.01	0.610	951	4992	128	Thange Output
08A0AH10	3.20	1.10	3.16	1.06	343	1465	75	↓ LF →
	2.70	0.600	2.69	0.590	435	1856	75	Radial load
	7.88	5.78	7.78	5.68	830	4359	128	
08A D AH7 D	4.90	2.80	4.89	2.79	951	4992	128	Thrust load
15A D AH1 D	7.82	3.80	7.55	3.53	540	2830	128	
15ADAHBD	7.42	3.40	7.36	3.34	684	3590	128	
	9.82	5.80	9.72	5.70	2042	9980	151	
15ADAH7D	8.82	4.80	8.79	4.77	2338	11400	151	

* The moment of inertia for the Servomotor and gear is the value without a holding brake. You can calculate the moment of inertia for a Servomotor with a Gear and Holding Brake with the following formula.

Motor moment of inertia for a Servomotor with a Holding Brake from Ratings of Servomotors without Gears (page 55) + Moment of inertia for the gear from the above table.

During operation, the gear generates the loss at the gear mechanism and oil seal. The loss depends on the torque and motor speed conditions. The temperature rise depends on the loss and heat dissipation conditions. For the heat dissipation conditions, always refer to the following Important table and check the gear and motor temperatures with the actual equipment. If the temperature is too high, implement the following measures.

• Decrease the load ratio.

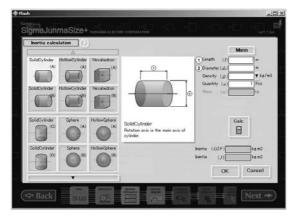

Ì

- Change the heat dissipation conditions.
- Use forced-air cooling for the motor with a cooling fan or other means.

Model		Heat Sink Siz	ze	
Model	1/5	1/11	1/21	1/33
SGM7P-01			,	Ą
SGM7P-02				
SGM7P-04			В	
SGM7P-08		С		
SGM7P-15				
• B: 300 mm ×	300 mm ×	6 mm, aluminum plate 12 mm, aluminum plate 12 mm, aluminum plate		

Servomotor Overload Protection Characteristics

The overload detection level is set for hot start conditions with a Servomotor surrounding air temperature of 40°C.


Note: The above overload protection characteristics do not mean that you can perform continuous duty operation with an output of 100% or higher. Use the Servomotor so that the effective torque remains within the continuous duty zone given in *Torque-Motor Speed Characteristics* (page 56).

Load Moment of Inertia

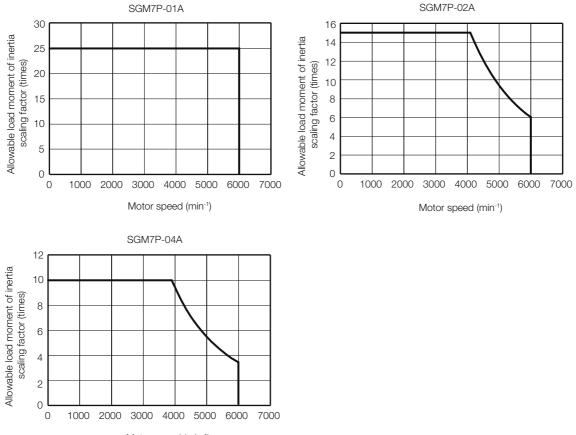
The load moment of inertia indicates the inertia of the load. The larger the load moment of inertia, the worse the response. If the moment of inertia is too large, operation will become unstable.

The allowable size of the load moment of inertia (J_L) for the Servomotor is restricted. Refer to *Ratings of Servomotors without Gears* (page 55). This value is provided strictly as a guideline and results depend on Servomotor driving conditions.

Use the SigmaJunmaSize+ AC Servo Drive Capacity Selection Program to check the driving conditions. Contact your Yaskawa representative for information on this program.

An Overvoltage Alarm (A.400) is likely to occur during deceleration if the load moment of inertia exceeds the allowable load moment of inertia. SERVOPACKs with a built-in regenerative resistor may generate a Regenerative Overload Alarm (A.320). Perform one of the following steps if this occurs.

- Reduce the torque limit.
- Reduce the deceleration rate.
- Reduce the maximum motor speed.
- Install an External Regenerative Resistor if the alarm cannot be cleared using the above steps.


Regenerative resistors are not built into SERVOPACKs for 400-W Servomotors or smaller Servomotors. Even for SERVOPACKs with built-in regenerative resistors, an External Regenerative Resistor is required if the energy that results from the regenerative driving conditions exceeds the allowable loss capacity (W) of the built-in regenerative resistor.

Allowable Load Moment of Inertia Scaling Factor for SERVO-PACKs without Built-in Regenerative Resistors

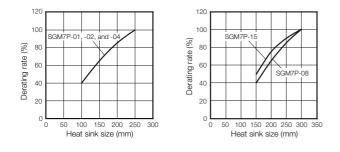
The following graphs show the allowable load moment of inertia scaling factor of the motor speed for SERVOPACKs* without built-in regenerative resistors when an External Regenerative Resistor is not connected.

If the Servomotor exceeds the allowable load moment of inertia, an overvoltage alarm may occur in the SERVOPACK.

These graphs provide reference data for deceleration at the rated torque or higher with a 200-VAC power supply input.

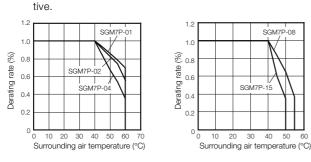
Motor speed (min⁻¹)

^{*} Applicable SERVOPACK models: SGD7S-R70A, -R90A, -1R6A, or -2R8A


Servomotor Heat Dissipation Conditions

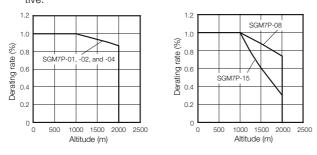
The Servomotor ratings are the continuous allowable values at a surrounding air temperature of 40°C when a heat sink is installed on the Servomotor. If the Servomotor is mounted on a small device component, the Servomotor temperature may rise considerably because the surface for heat dissipation becomes smaller. Refer to the following graphs for the relation between the heat sink size and derating rate.

Note: The derating rates are applicable only when the average motor speed is less than or equal to the rated motor speed. If the average motor speed exceeds the rated motor speed, consult with your Yaskawa representative.


The actual temperature rise depends on how the heat sink (i.e., the Servomotor mounting section) is attached to the installation surface, what material is used for the Servomotor mounting section, and the motor speed. Always check the Servomotor temperature with the actual equipment.

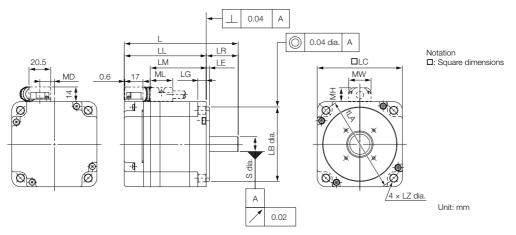
Applications Where the Surrounding Air Temperature of the Servomotor Exceeds 40°C

The Servomotor ratings are the continuous allowable values at a surrounding air temperature of 40°C. If you use a Servomotor at a surrounding air temperature that exceeds 40°C (60°C max.), apply a suitable derating rate from the following graphs.


Note: The derating rates are applicable only when the average motor speed is less than or equal to the rated motor speed. If the average motor speed exceeds the rated motor speed, consult with your Yaskawa representa-

Applications Where the Altitude of the Servomotor Exceeds 1,000 m

The Servomotor ratings are the continuous allowable values at an altitude of 1,000 m or less. If you use a Servomotor at an altitude that exceeds 1,000 m (2,000 m max.), the heat dissipation effect of the air is reduced. Apply the appropriate derating rate from the following graphs.


Note: The derating rates are applicable only when the average motor speed is less than or equal to the rated motor speed. If the average motor speed exceeds the rated motor speed, consult with your Yaskawa representative.

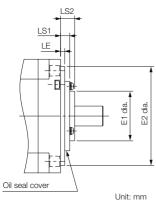
External Dimensions

Servomotors without Gears

◆ SGM7P-01, -02, and -04

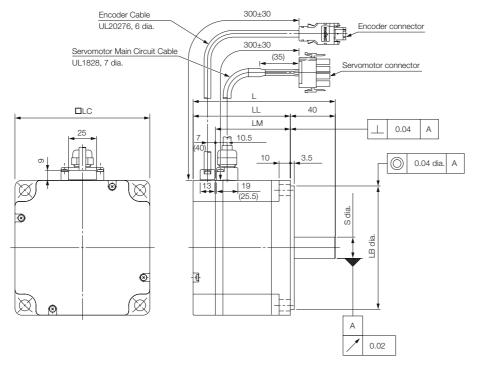
Model SGM7P-		LL	LM	Flange Dimensions								
	L			LR	LE	LG	LC	LA	LB	LZ	S	
01A D A2 D	87 (115)	62 (90)	36	25	3	6	60	70	50 0-0.025	5.5	8 _{-0.009}	
02A□A2□	97 (128.5)	67 (98.5)	43	30	3	8	80	90	70 .0.030	7	14 -0.011	
04A□A2□	107 (138.5)	77 (108.5)	53	30	3	8	80	90	70 -0.030	7	14 ⁰ -0.011	

Model SGM7P-	MD	MW	MH	ML	Approx. Mass [kg]
01A D A2 D	8.5	19	12	20	0.5 (0.7)
02A□A2□	13.6	21	13	21	1.1 (1.6)
04A□A2□	13.6	21	13	21	1.4 (1.9)


Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

2. Refer to the following section for detailed shaft end specifications.

Shaft End Specifications (page 66)


Specifications of Options

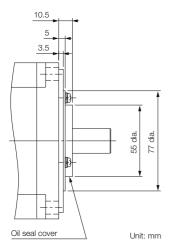
Oil Seal

Model SGM7P-	Dimensions with Oil Seal										
	E1	E2	LS1	LS2	LE						
01A D A2 D	22	39	4	7.5	1.5						
02A D A2 D	35	49	6.5	10	2.5						
04A D A2 D	55	49	0.5	10	2.0						

◆ SGM7P-08 and -15

Unit: mm

Model SGM7P-	L	LL	LM	LB	LC	S	Approx. Mass [kg]
08A D A2 D	126.5 (160)	86.5 (120)	66.7	110 _{-0.035}	120	19 .0.013	4.2 (5.7)
15A D A2 D	154.5 (187.5)	114.5 (147.5)	94.7	110 ⁰ -0.035	120	19 ⁰ -0.013	6.6 (8.1)


Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

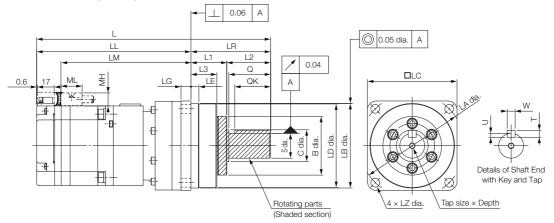
2. Refer to the following section for detailed shaft end specifications.

Shaft End Specifications (page 66)

Specifications of Options

Oil Seal

Shaft End Specifications


♦ SGM7P-□□□□□□□

Code	Spe	cification
2	Straight without key	
6	Straight with key and (Key slot is JIS B130	tap for one location 1-1996 fastening type.)
В	With two flat seats	

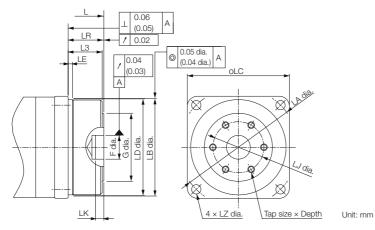
Shaft End Details		Servomotor Model SGM7P-									
Shart Elid Details		01	02	04	08	15					
Code: 2 (Straight without Key)					F						
	LR	25	3	0	40						
	S	8-0.009	14.	0 0.011	19	0 -0.013					
Code: 6 (Straight with Key and Tap)											
LB	LR	25	3	0	4	.0					
	QK	14	1	4	22						
	S	80.009	14.	0 0.011	19	0 -0.013					
	W	3	Ę	5	(6					
	Т	3	Ę	5	6						
Y ie of the constraint of	U	1.8	3	3	3	.5					
	Р	$M3 \times 6L$	M5 :	× 8L	M6 >	< 10L					
Code: B (with Two Flat Seats)	1	1			1						
	LR	25	3	0	4	0					
QH	QH	15	1	5	2	2					
	S	8-0.009	14.	0 0.011	19	0 -0.013					
	H1	7.5	1	3	1	8					
Cross section Y-Y	H2	7.5	1	3	18						

Servomotors with Gears

◆ SGM7P-01, -02, and -04

Unit: mm

Model	Gear				1.5.4					Flan	ge Din	nensior	าร			
SGM7P-	Ratio	L		L	LM	LF	7	LE	LG	В	LD	LB		LC	LA	LZ
01A□AH1 🗷 🗆	1/5	143.5 (171.5		1.5 9.5)	75.5	42	2	2.2	5	29	39.5	40.02	25	40	46	3.4
01A□AHB⊠□	1/11	184		26	100	58	3	2.5	8	40	55.5	56.0		60	70	5.5
01A□AHC N□	1/21	(212)		54)	100			2.0	Ŭ	10	00.0	00-0.03	30	00	10	0.0
01A□AH7 🗷 🗆	1/33	213 (241)		33 51)	107	80)	7.5	10	59	84	85.0.03	35	90	105	9
02A□AH1 IN□	1/5	190		32	108	58	2	2.5	8	40	55.5	56.0.03		60	70	5.5
02A□AHB⊠□	1/11	(221.5	5) (16	3.5)	100		,	2.0	0	-0	00.0	50-0.03	30	00	10	0.0
02A□AHC⊮□	1/21	225		45	121	80		7.5	10	59	84	85.0.03		90	105	9
02A□AH7 I □	1/33	(256.5	5) (17	6.5)	121	00		1.0	10	00	04	00-0.03	35	30	100	5
04A□AH1 🗷 🗆	1/5	200 (231.5		42 3.5)	118	58	3	2.5	8	40	55.5	56.0	80	60	70	5.5
04A□AHB 🗷 🗆	1/11	235	15	55	101	00	~	7.5	10	50	0.4			90	105	9
04A□AHC I □	1/21	(266.5	5) (18	6.5)	131	80		7.5	10	59	84	85.0.03	35	90	105	9
04A□AH7 🗷 🗆	1/33	314 (345.5	18 5) (21)		157	13	3	12.5	13	84	114	115.0)35	120	135	11
Model	Flange	e Dimen	sions						Tap S	lize x	K	ey Dim	nensi	ions		Approx.
SGM7P-	L1	L2	L3	0	2	С	:	S		oth	QK	U	W	'	Т	Mass [kg]
01A□AH1 🗷 🗆	22	20	14.6	-	-	-	10	0 -0.015	M3 :	× 6L	15	2.5	4		4	0.8 (1)
01A□AHB⊠□	28	30	00	0	0 1	20	10	. 0	M4 :	2 01	25	3	5		5	1.6
01A□AHC⊮□	20	30	20	2	0	20	10	0 -0.018	1014 /	X OL	20	3	5		5	(1.8)
01A□AH7 🗷 🗆	36	44	26	4	2 3	32	25	0 -0.021	M6 ×	:12L	36	4	8		7	2.9 (3.1)
02A□AH1 I I																1.5 (1.7)
	28	30	20	2	8 2	20	16	0 -0.018	M4 :	× 8L	25	3	5		5 —	1.6
02A □ AHB ⊠ □																(1.8)
	26	44	26	4	<u> </u>	20	05	0	Mes	(10)	26	4	0		7	1 (1 5)
02A□AH7 🗷 🗆	36	44	26	4	~	32	25	0 -0.021	M6 ×	. IZL	36	4	8		1	4 (4.5)
04A□AH1 🗷 🗆	28	30	20	2	8 2	20	16	0 -0.018	M4 :	× 8L	25	3	5		5	2.4 (2.9)
04A□AHB⊮□ 04A□AHC⊮□	36	44	26	4	2 3	32	25	0 -0.021	M6 ×	: 12L	36	4	8		7	4.3 (4.8)
04A□AH7 🗷 🗆	48	85	33	8	2 4	44	40	0 -0.025	M10:	× 20L	70	5	12	2	8	8.9 (9.4)

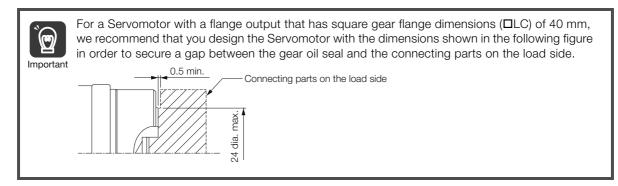

Rotary Servomotors SGM7P

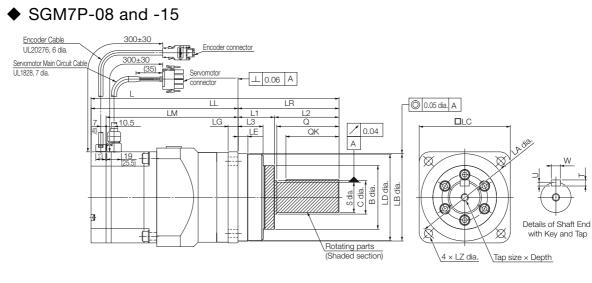
* The asterisk (*) is replaced by shaft end code 6 (straight with key and tap) for the 8th digit of the model designation.

If a key and tap are not necessary, specify shaft end code 2 (without key and tap).

- Note: 1. The values in parentheses are for Servomotors with Holding Brakes.
 - 2. Gear dimensions are different from those of the $\Sigma,$ $\Sigma\text{-II},$ and $\Sigma\text{-III}$ Series.

Flange Output Face




Note: The geometric tolerance in parentheses is the value for LC = 40.

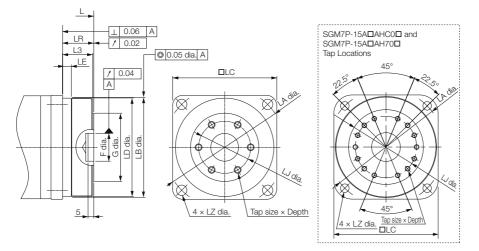
Model SGM7P-	Gear Ratio	L	LR	LJ	F	G	LK	No. of Taps × Tap Size × Depth	Approx. Mass [kg]
01A□AH10□	1/5	116.5 (144.5)	15	18	5+0.012	24	3	$3 \times M4 \times 6L$	0.8 (1)
	1/11	147	21	30	14 ^{+0.018}	40	5	$6 \times M4 \times 7L$	1.5 (1.7)
01ADAHC0D	1/21	(175)	21	30	14 0	40	5	0 X 1V14 X 7 L	1.5 (1.7)
01ADAH70D	1/33	160 (188)	27	45	24+0.021	59	5	$6 \times M6 \times 10L$	2.5 (2.7)
02AOAH10O	1/5	153	21	30	14 ^{+0.018}	40	5	$6 \times M4 \times 7L$	2.0 (2.5)
	1/11	(184.5)	21	30	14 0	40	5	0 X 1V14 X 7 L	2.1 (2.6)
02AOAHC0O	1/21	172	27	45	24 ^{+0.021}	59	5	$6 \times M6 \times 10L$	3.6 (4.1)
02AOAH70O	1/33	(203.5)	21	40	24 0	09	5	U X IVIU X TUL	3.0 (4.1)
04ADAH10D	1/5	163 (194.5)	21	30	14 ^{+0.018}	40	5	6 × M4 × 7L	2.3 (2.8)
	1/11	182	27	45	24 ^{+0.021}	59	5	$6 \times M6 \times 10L$	20(11)
04ADAHC0D	1/21	(213.5)	21	40	∠4 ₀	09	5		3.9 (4.4)
04ADAH70D	1/33	216 (247.5)	35	60	32+0.025	84	5	6 × M8 × 12L	7.5 (8)

Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

2. Dimensions not found in the above table are the same as those in the table on the previous page.

Unit: I	mm
---------	----

Model SGM7P-	Gea	r L		LL	L	M				Flan	ge D)imer	nsions					
	Ratio	o '	-	LL		VI	LR	LE	LG	В	LD)	LB	LC	LA	LZ		
08A□AH1 🗷 🗆	1/5	20		181.5	16-	17	80	7.5	10	59	84		85 ^{.0}	90	105	9		
08A□AHB⊠□	1/11	(29	95)	(215)	10	1.7 00		1.0	10	00	0-		0-0.035	30	100	3		
	1/21	326	6.5	193.5	179	173.7		173.7 133		12.	13	84	11	1 1	15.00	120	135	11
08A□AH7 □	1/33	3 (36	50)	(227)	170					5	10	04			I J -0.035	120	100	
15A□AH1 🗷 🗆	1/5	354	4.5	221.5	201.7		133	12.	13	84	11	1 1	15.00	120	135	11		
15A□AHB⊠□	1/1-	(38	7.5)	(254.5)	201.7		100	5	10	04			I J -0.035	120	135			
15A□AHC⊮□	1/21	393	3.5	237.5	217.7		156	12	16	122	16	<u>с</u> 1.	15 ^{.0}	170	190	14		
15A□AH7 🗷 🗆	1/33	3 (426	6.5)	(270.5)	211.1		100	12	10	122	10		10-0.063	170	130	14		
	Flang	e Dimen	isions		0	C S		Тар	Size	×	Ke	y Din	nensio	ns	Арр	rox.		
Model SGM7P-	L1	L2	L3	Q	C			D	Depth		QK l		W	Т	Mass[kg]			
08A□AH1 🗷 🗆	36	44	26	42	32	0	5.0 -0.021	$M6 \times 12L$		9	6	4	8	7	6.9	(8.4)		
	50	44	20	42	52	23	J _{-0.021}	IVIO X IZL		_ 30		4	0	1	7.1	(8.6)		
	48	85	33	82	44	4	0.025	MIC	$M10 \times 20L$		70		12	8	12 (-	13.5)		
08A□AH7 ₪ □	40	00	00	02	44	4	U _{-0.025}	IVITO	7 ~ 20			5	12	0	12 (10.0)		
15A□AH1 🗷 🗆	48	85	33	82	11	4	0.025	MIC	$) \times 20 L 7$		0	5	12	8	14 (*	15.5)		
15A□AHB∎□	40	00	00	02	44	44 40		IVITO	7 ~ 20		0	5	12	0	14.5	(16)		
15A□AHC N□	51	105	51	82	56	E	00	MIC	$) \times 20$	1 7	0	5.5	14	9	25.7	(27.2)		
15A□AH7 🗷 🗆	01	100		02	00	50.025		IVITO	7 20			0.0	14	3	20.7	(- 1 - 2)		


* The asterisk (*) is replaced by shaft end code 6 (straight with key and tap) for the 8th digit of the model designation.

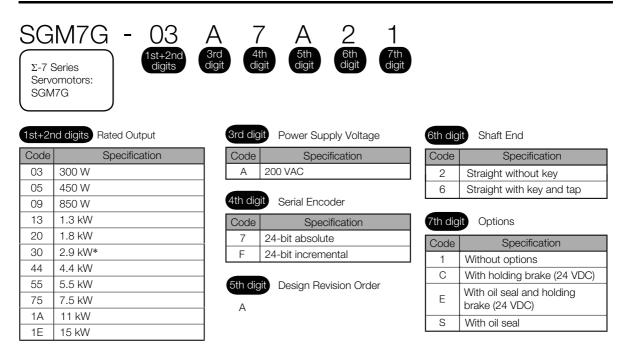
If a key and tap are not necessary, specify shaft end code 2 (without key and tap).

Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

2. Gear dimensions are different from those of the $\Sigma,$ $\Sigma\text{-II},$ and $\Sigma\text{-III}$ Series.

■ Flange Output Face

Model SGM7P-	Gear Ratio	L	LR	LJ	F	G	LK	No. of Taps × Tap Size × Depth	Approx. Mass [kg]	
08AOAH10O	1/5	208.5	27	45	24+0.021	59	5	$6 \times M6 \times 10L$	6.5 (8.0)	
	1/11	(242)	21	45	Z4 0	09	5		6.7 (8.2)	
08ADAHC0D	1/21	228.5	35	60	32+0.025	84	5	$6 \times M8 \times 12L$	106(101)	
08AOAH70O	1/33	(262)	33	00	32 0	04	5	U X IVIO X 12L	10.6 (12.1)	
15AOAH10O	1/5	256.5	35	60	32+0.025	84	5	$6 \times M8 \times 12L$	12.6 (14.1)	
15AOAHBOO	1/11	(289.5)	30	00	32 0	04	5	U X IVIO X 12L	13.1 (14.6)	
15ADAHC0D	1/21	290.5	53	100	47+0.025	122	7	$14 \times M8 \times 12L$	22.7 (24.2)	
15AOAH70O	1/33	(323.5)	55	100	47 0	122	1	14 × 100 × 12L	22.7 (24.2)	


Unit: mm

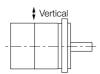
Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

2. Dimensions not found in the above table are the same as those in the table on the previous page.

SGM7G

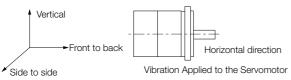
Model Designations

* The rated output is 2.4 kW if you combine the SGM7G-30A with the SGD7S-200A.


Specifications and Ratings

Specifications

	Voltage	200 V										
M	lodel SGM7G-	03A	05A	09A	13A	20A	30A	44A	55A	75A	1AA	1EA
Time Rating						Сс	ontinuc	ous				
Thermal Class	3		F									
Insulation Res	istance	500 VDC, 10 M Ω min.										
Withstand Vol	tage				1,5	500 VA	AC for	1 mini	ute			
Excitation						Perma	nent n	nagne	t			
Mounting						Flang	je-moi	unted				
Drive Method						Dir	rect dr	ive				
Rotation Direc	tion	Counte	erclock	wise (C	CW) for	forward	d refere	nce wh	en view	ed from	n the loa	ad side
Vibration Clas	s*1						V15					
	Surrounding Air Temperature	0°C t	o 40°C	(With	derating	g, usag	e is pos	ssible b	etweer	140°C a	and 60'	°C.) ^{*4}
	Surrounding Air Humidity		20%	to 80°	% rela	tive hu	imidity	(with	no cor	ndensa	ation)	
Environmen- tal Condi- tions	Installation Site	• Mus • Mus • Mus is p	st be v st faci st hav ossibl	well-ve litate i e an a e betv	entilate nspec Ititude veen 1	ed and tion ar of 1,0 ,000 r	free c nd clea	of dust ining. or less 2,000	nd exp and n s. (With m.) ^{*5}	noistur	e.	
	Storage Environment	Stora	ge Ter	nperat	ure: -2	20°C to	₀ 60°C	(with I	th the pow no free y (with r	zing)		
Shock Resistance ^{*2}	Impact Acceleration Rate at Flange					4	90 m/s	8 ²				
Resistance	Number of Impacts					1	2 times	3				
Vibration Resistance ^{*3}	Vibration Acceleration Rate at Flange	49	9 m/s ²	² (24.5	m/s ²	front t	o bacl	<)		24.5	m/s²	
Arristicatela	SGD7S-	3Ra	8A	7R6A	120A	180A	33	0A	470A	550A	590A	780A
Applicable SERVOPACKs	SGD7W-	5R5 7R6		7A6A				-	_			·


*1. A vibration class of V15 indicates a vibration amplitude of 15 µm maximum on the Servomotor without a load at the rated motor speed.

*2. The shock resistance for shock in the vertical direction when the Servomotor is mounted with the shaft in a horizontal position is given in the above table.

Shock Applied to the Servomotor

*3. The vertical, side-to-side, and front-to-back vibration resistance for vibration in three directions when the Servomotor is mounted with the shaft in a horizontal position is given in the above table. The strength of the vibration that the Servomotor can withstand depends on the application. Always check the vibration acceleration rate that is applied to the Servomotor with the actual equipment.

*4. If the surrounding air temperature will exceed 40°C, refer to the following section.

∎ ∰ Applications Where the Surrounding Air Temperature of the Servomotor Exceeds 40 ℃ (page 79)

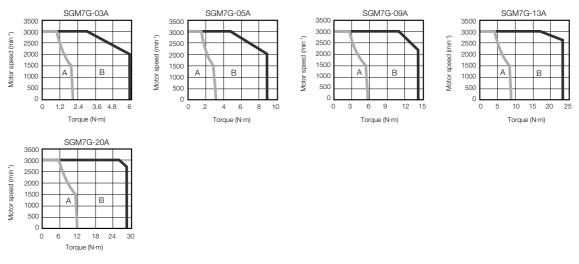
*5. If the altitude will exceed 1,000 m, refer to the following section.

Applications Where the Altitude of the Servomotor Exceeds 1,000 m (page 80)

*6. If you use a Σ -7W SERVOPACK, the control gain may not increase as much as with a Σ -7S SERVOPACK and other performances may be lower than those achieved with a Σ -7S SERVOPACK.

Servomotor Ratings

	Voltage				200 V					
	Model SGM7G-		03A	05A	09A	13A	20A			
Rated Output*1		kW	0.3	0.45	0.85	1.3	1.8			
Rated Torque ^{*1, *}	*2	N∙m	1.96	2.86	5.39	8.34	11.5			
Instantaneous M	aximum Torque ^{*1}	N∙m	5.88	8.92	14.2	23.3	28.7			
Rated Current*1		Arms	2.8	3.8	6.9	10.7	16.7			
Instantaneous M	aximum Current ^{*1}	Arms	8.0	8.0 11 17 28						
Rated Motor Spe	ed*1	min ⁻¹	1500							
Maximum Motor		min ⁻¹			3000					
Torque Constant		N•m/Arms	0.776	0.854	0.859	0.891	0.748			
Motor Moment c	of Inertia	×10 ⁻⁴ kg·m ²	2.48 (2.73)	3.33 (3.58)	13.9 (16.0)	19.9 (22.0)	26.0 (28.1)			
Rated Power Ra	te*1	kW/s	15.5 (14.1)	24.6 (22.8)	20.9 (18.2)	35.0 (31.6)	50.9 (47.1)			
Rated Angular A	cceleration Rate ^{*1}	rad/s ²	7900 (7180)	8590 (7990)	3880 (3370)	4190 (3790)	4420 (4090)			
Heat Sink Size		mm		250 × 6 inum)	4($00 \times 400 \times 2$ (steel)	20			
Protective Struct	ture ^{*3}		Totally enclosed, self-cooled, IP67							
	Rated Voltage	V	24 VDC +10%							
	Capacity	W			10					
	Holding Torque	N∙m	4	.5	12.7	19	.6			
Holding Brake	Coil Resistance	Ω (at 20°C)	5	6		59				
Specifications ^{*4}	Rated Current	A (at 20°C)	0.	43		0.41				
	Time Required to Release Brake	ms			100					
	Time Required to Brake	ms			80					
	Allowable Load Moment of Inertia (Motor Moment of Inertia Ratio)			15 times		5 times				
	With External Regener and Dynamic Brake Re		15 times		10 times					
Allowable Shaft	LF	mm	4	.0	58					
Loads ^{*5}	Allowable Radial Load	Ν		490		686	980			
LOUUS	Allowable Thrust Load	N		98		343	392			


Note: 1. The values in parentheses are for Servomotors with Holding Brakes.

2. Refer to the following section for footnotes *1 to *5.

■ Notes for the Servomotor Ratings Tables (page 76)

Torque-Motor Speed Characteristics for Three-phase, 200 V

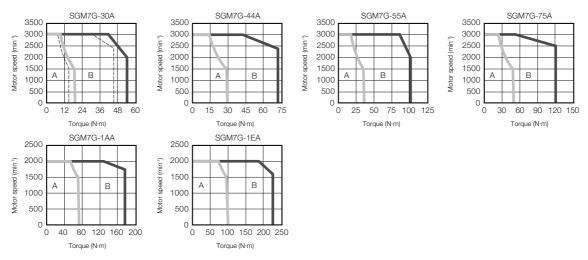
- A : Continuous duty zone
- B : Intermittent duty zone

- Note: 1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 20°C. These are typical values.
 - 2. The characteristics in the intermittent duty zone depend on the power supply voltage.
 - 3. If the effective torque is within the allowable range for the rated torque, the Servomotor can be used within the intermittent duty zone.
 - 4. If you use a Servomotor Main Circuit Cable that exceeds 20 m, the intermittent duty zone in the torquemotor speed characteristics will become smaller because the voltage drop increases.

Servomotor Ratings

Voltage			200 V						
Model SGM7G-			30A	30A*6	44A	55A	75A	1AA	1EA
Rated Output ^{*1}		kW	2.9	2.4	4.4	5.5	7.5	11	15
Rated Torque ^{*1, *2}		N∙m	18.6	15.1	28.4	35.0	48.0	70.0	95.4
Instantaneous Maximum Torque ^{*1}		N∙m	54.0	45.1	71.6	102	119	175	224
Rated Current ^{*1}		Arms	23.8	19.6	32.8	37.2	54.7	58.6	78.0
Instantaneous Maximum Current*1		Arms	70	56	84	110	130	140	170
Rated Motor Speed ^{*1}		min ⁻¹	1500	1500	1500	1500	1500	1500	1500
Maximum Motor Speed ^{*1}		min ⁻¹	3000	3000	3000	3000	3000	2000	2000
Torque Constant		N•m/Arms	0.848	0.848	0.934	1.00	0.957	1.38	1.44
Motor Moment of Inertia		×10 ⁻⁴ kg·m ²	46.0 (53.9)	46.0 (53.9)	67.5 (75.4)	89.0 (96.9)	125 (133)	242 (261)	303 (341)
Rated Power Rate ^{*1}		kW/s	75.2 (64.2)	49.5 (42.2)	119 (107)	138 (126)	184 (173)	202 (188)	300 (267)
Rated Angular Acceleration Rate ^{*1}		rad/s ²	4040 (3450)	3280 (2800)	4210 (3770)	3930 (3610)	3840 (3610)	2890 (2680)	3150 (2800)
Heat Sink Size		mm	550 × 550 × 30 (steel) 650 × 650 × 35 (steel)						
Protective Structure*3			Totally enclosed, self-cooled, IP67						
Holding Brake Specifications ^{*4}	Rated Voltage	V	24 VDC ^{+10%} ₀						
	Capacity	W	18.5 25			5	32	35	
	Holding Torque	N∙m	43.1			72.6		84.3	114.6
	Coil Resistance	Ω (at 20°C)	31			23		18	17
	Rated Current	A (at 20°C)	0.77			1.05		1.33	1.46
	Time Required to Release Brake	ms	170						250
	Time Required to Brake	ms	100			80			
Allowable Load Moment of Inertia (Motor Moment of Inertia Ratio)			5 times	3 times		5 times			
	With External Regenerative Resistor and Dynamic Brake Resistor		10 times	7 times		10 times			
Allowable Shaft Loads ^{*5}	LF	mm	79		1.	13	1	16	
	Allowable Radial Load	Ν	1470			1764		4998	
	Allowable Thrust Load	Ν	490			588		2156	

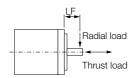
Note: 1. The values in parentheses are for Servomotors with Holding Brakes.


2. Refer to the following section for footnotes *1 to *6.

■ Notes for the Servomotor Ratings Tables (page 76)

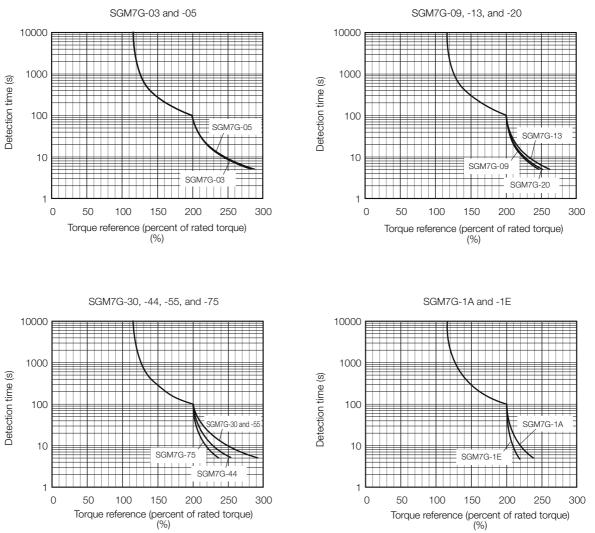
Torque-Motor Speed Characteristics

A : Continuous duty zone B : Intermittent duty zone


(solid lines): With three-phase 200-V or single-phase 230-V input
 (dotted lines): With single-phase 200-V input

- Note: 1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. These are typical values.
 - 2. The characteristics in the intermittent duty zone depend on the power supply voltage.
 - 3. If the effective torque is within the allowable range for the rated torque, the Servomotor can be used within the intermittent duty zone.
 - 4. If you use a Servomotor Main Circuit Cable that exceeds 20 m, the intermittent duty zone in the torquemotor speed characteristics will become smaller because the voltage drop increases.

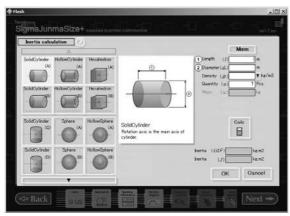
Notes for the Servomotor Ratings Tables


- *1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 20°C. These are typical values.
- *2. The rated torques are the continuous allowable torque values at a surrounding air temperature of 40°C with an aluminum or steel heat sink of the dimensions given in the table.
- *3. This does not apply to the shaft opening. Protective structure specifications apply only when the special cable is used.
- *4. Observe the following precautions if you use a Servomotor with a Holding Brake.
 - The holding brake cannot be used to stop the Servomotor.
 - The time required to release the brake and the time required to brake depend on which discharge circuit is
 - used. Confirm that the operation delay time is appropriate for the actual equipment.
 - The 24-VDC power supply is not provided by Yaskawa.
- *5. The allowable shaft loads are illustrated in the following figure. Design the mechanical system so that the thrust and radial loads applied to the Servomotor shaft end during operation do not exceed the values given in the table.

*6. This is the value if you combine the SGM7G-30A with the SGD7S-200A.

Servomotor Overload Protection Characteristics

The overload detection level is set for hot start conditions with a Servomotor surrounding air temperature of 40°C.


Note: The above overload protection characteristics do not mean that you can perform continuous duty operation with an output of 100% or higher. Use the Servomotor so that the effective torque remains within the continuous duty zone given in *Torque-Motor Speed Characteristics for Three-phase, 200 V* on page 74.

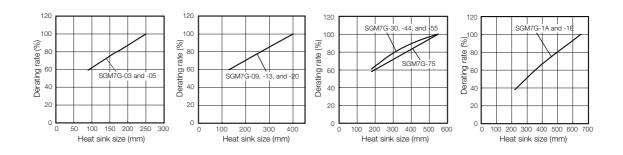
Load Moment of Inertia

The load moment of inertia indicates the inertia of the load. The larger the load moment of inertia, the worse the response. If the moment of inertia is too large, operation will become unstable.

The allowable size of the load moment of inertia (J_L) for the Servomotor is restricted. Refer to Servomotor Ratings on page 73. This value is provided strictly as a guideline and results depend on Servomotor driving conditions.

Use the SigmaJunmaSize+ AC Servo Drive Capacity Selection Program to check the driving conditions. Contact your Yaskawa representative for information on this program.

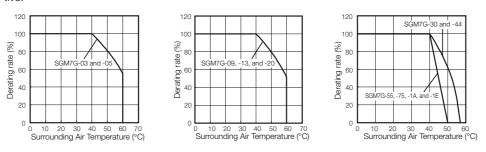
An Overvoltage Alarm (A.400) is likely to occur during deceleration if the load moment of inertia exceeds the allowable load moment of inertia. SERVOPACKs with a built-in regenerative resistor may generate a Regenerative Overload Alarm (A.320). Perform one of the following steps if this occurs.


- Reduce the torque limit.
- Reduce the deceleration rate.
- Reduce the maximum motor speed.
- Install an External Regenerative Resistor if the alarm cannot be cleared using the above steps.

Servomotor Heat Dissipation Conditions

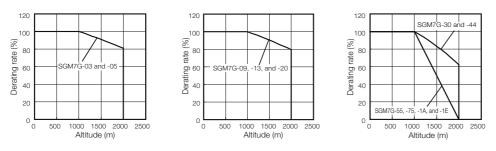
The Servomotor ratings are the continuous allowable values at a surrounding air temperature of 40°C when a heat sink is installed on the Servomotor. If the Servomotor is mounted on a small device component, the Servomotor temperature may rise considerably because the surface for heat dissipation becomes smaller. Refer to the following graphs for the relation between the heat sink size and derating rate.

Note: The derating rates are applicable only when the average motor speed is less than or equal to the rated motor speed. If the average motor speed exceeds the rated motor speed, consult with your Yaskawa representative.


The actual temperature rise depends on how the heat sink (i.e., the Servomotor mounting section) is attached to the installation surface, what material is used for the Servomotor mounting section, and the motor speed. Always check the Servomotor temperature with the actual equip-Important ment.

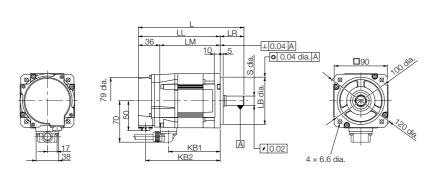
Applications Where the Surrounding Air Temperature of the Servomotor Exceeds 40°C

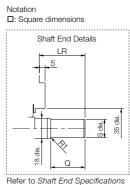
The Servomotor ratings are the continuous allowable values at a surrounding air temperature of 40°C. If you use a Servomotor at a surrounding air temperature that exceeds 40°C (60°C max.), apply a suitable derating rate from the following graphs.


Note: The derating rates are applicable only when the average motor speed is less than or equal to the rated motor speed. If the average motor speed exceeds the rated motor speed, consult with your Yaskawa representative.

Applications Where the Altitude of the Servomotor Exceeds 1,000 m

The Servomotor ratings are the continuous allowable values at an altitude of 1,000 m or less. If you use a Servomotor at an altitude that exceeds 1,000 m (2,000 m max.), the heat dissipation effect of the air is reduced. Apply the appropriate derating rate from the following graphs.


Note: The derating rates are applicable only when the average motor speed is less than or equal to the rated motor speed. If the average motor speed exceeds the rated motor speed, consult with your Yaskawa representative.



External Dimensions

Servomotors without Holding Brakes

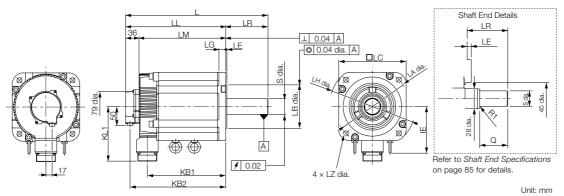
♦ SGM7G-03 and -05

Refer to Shaft End Specifications on page 85 for details.

Unit: mm

Model	1	11	LM	LR	KB1	KB2	KL1	Flange Dimensions					
SGM7G-	L	LL		LIN	KD1	ND2		LA	LB	LC	LE		
03A D A21	166*	126	90	40*	75	114	70	100	80 .0.030	90	5		
05A D A21	179	139	103	40	88	127	70	100	80 .0.030	90	5		

Model	Flang	je Dimen	isions	Shaft End Din	nensions	Approx.
SGM7G-	LG	LH	LZ	S	Q	Mass [kg]
03ADA21	10	120	6.6	16 0.011*	30*	2.6
05ADA21	10	120	6.6	16 -0.011	30	3.2

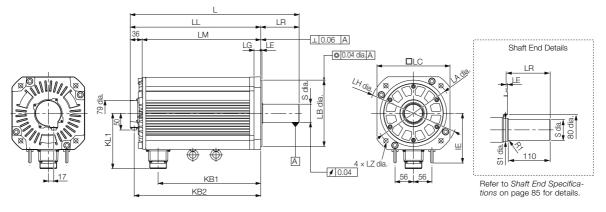

Note: Servomotors with Oil Seals have the same dimensions.

* The L, LR, S, and Q dimensions of these Servomotors are different from those of the Σ -V-series SGMGV Servomotors. Models that have the same installation dimensions as the SGMGV Servomotors are also available. Contact your Yaskawa representative for details.

Refer to the following section for information on connectors.

■ SGM7G-03 and -05 without Holding Brakes (page 86)

♦ SGM7G-09 to -75



Model SGM7G-	L	LL	LM	LR	KB1	KB2	IE	KL1	Flange Dimensions							Shaft E Dimensi		Approx. Mass [kg]
50IVI70-									LA	LB	LC	LE	LG	LH	LZ	S	Q	iviass [ky]
09A□A21	195	137	101	58	83	125	-	104	145	110 _{-0.035}	130	6	12	165	9	24 _{-0.013} *	40	5.5
13A□A21	211	153	117	58	99	141	-	104	145	110 _{-0.035}	130	6	12	165	9	24 _{-0.013} *	40	7.1
20A□A21	229	171	135	58	117	159	-	104	145	110 _{-0.035}	130	6	12	165	9	24 ⁰ -0.013	40	8.6
30A¤A21	239	160	124	79	108	148	-	134	200	114.3 _{-0.025}	180	3.2	18	230	13.5	35 ^{+0.01}	76	13.5
44A0A21	263	184	148	79	132	172	-	134	200	114.3 _{-0.025}	180	3.2	18	230	13.5	35 ° ^{+0.01}	76	17.5
55A0A21	334	221	185	113	163	209	123	144	200	114.3 _0.025	180	3.2	18	230	13.5	42 -0.016	110	21.5
75A0A21	380	267	231	113	209	255	123	144	200	114.3 ⁰ -0.025	180	3.2	18	230	13.5	42 -0.016	110	29.5

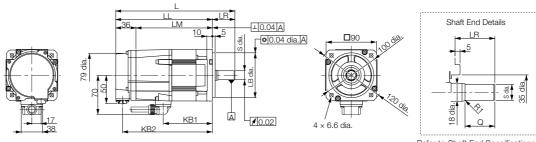
Note: Servomotors with Oil Seals have the same dimensions.

* The S dimensions of these Servomotors are different from those of the Σ-V-series SGMGV Servomotors. Models that have the same installation dimensions as the SGMGV Servomotors are also available. Contact your Yaskawa representative for details.

SGM7G-1A and -1E

Unit: mm

Model SGM7G-	L	LL	LM	LR	KB1	KB2	IE	KL1		Flange Dimensions						Shaft I Dimens		Approx. Mass [kg]
30IVI70-									LA	LB	LC	LE	LG	LH	LZ	S	S1	iviass [ky]
1AA🗆A21	447	331	295	116	247	319	150	168	235	200 _0.046	220	4	20	270	13.5	42 _{-0.016}	50	57
1EA0A21	509	393	357	116	309	381	150	168	235	200 _0.046	220	4	20	270	13.5	55 +0.030 +0.011	60	67


Note: Servomotors with Oil Seals have the same dimensions.

Refer to the following section for information on connectors.

■ SGM7G-09 to -1E without Holding Brakes (page 86)

Servomotors with Holding Brakes

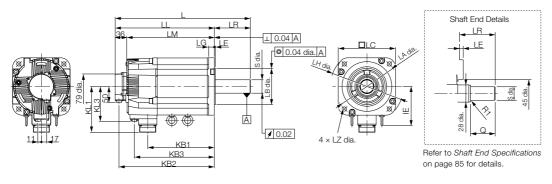
◆ SGM7G-03 and -05

Refer to Shaft End Specifications on page 85 for details.

Unit: mm

Model		LL LM LR KB1 KB2 KL		KL1	Flange Dimensions						
SGM7G-	L .	LL			ND1	NDZ		LA	LB	LC	LE
03ADA2C	199*	159	123	40*	75	147	70	100	80 .0.030	90	5
05ADA2C	212	172	136	40	88	160	70	100	80 .0.030	90	5

Model SGM7G-	Flang	je Dimen	isions	Shaft End sion	Approx. Mass		
Sciwir d-	LG	LH	LZ	S	Q	[kg]	
03ADA2C	10	120	6.6	16 ⁰ -0.011*	30*	3.6	
05ADA2C	10	120	6.6	16 ⁰ -0.011	30	4.2	

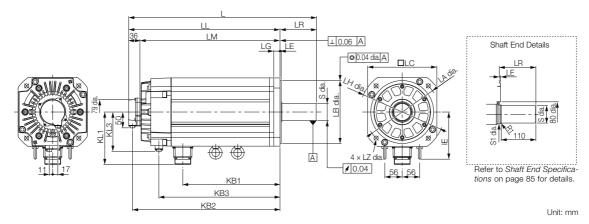

Note: Servomotors with Oil Seals have the same dimensions.

* The L, LR, S, and Q dimensions of these Servomotors are different from those of the Σ-V-series SGMGV Servomotors. Models that have the same installation dimensions as the SGMGV Servomotors are also available. Contact your Yaskawa representative for details.

Refer to the following section for information on connectors.

■ SGM7G-03 and -05 with Holding Brakes (page 86)

♦ SGM7G-09 to -75


Unit: mm

Model SGM7G-	L	LL	LM	LR	KB1	KB2	KB3	IE	KL1	KL3								Shaft E Dimensio		Approx. Mass [kg]
30W/0-											LA	LB	LC	LE	LG	LH	LZ	S	Q	wass [ky]
09ADA2C	231	173	137	58	83	161	115	-	104	80	145	110 _{-0.035}	130	6	12	165	9	24 ^{.0} .013*	40	7.5
13ADA2C	247	189	153	58	99	177	131	-	104	80	145	110 _{-0.035}	130	6	12	165	9	24 _{-0.013} *	40	9.0
20ADA2C	265	207	171	58	117	195	149	I	104	80	145	110 _{-0.035}	130	6	12	165	9	24 _{-0.013}	40	11.0
30ADA2C	287	208	172	79	108	196	148	-	134	110	200	114.3 ⁰ -0.025	180	3.2	18	230	13.5	35 0+0.01	76	19.5
44ADA2C	311	232	196	79	132	220	172	-	134	110	200	114.3 ⁰ -0.025	180	3.2	18	230	13.5	35 ^{+0.01}	76	23.5
55ADA2C	378	265	229	113	163	253	205	123	144	110	200	114.3 _{-0.025}	180	3.2	18	230	13.5	42 -0.016	110	27.5
75ADA2C	424	311	275	113	209	299	251	123	144	110	200	114.3 ⁰ -0.025	180	3.2	18	230	13.5	42 -0.016	110	35.0

Note: Servomotors with Oil Seals have the same dimensions.

* The S dimensions of these Servomotors are different from those of the Σ -V-series SGMGV Servomotors. Models that have the same installation dimensions as the SGMGV Servomotors are also available. Contact your Yaskawa representative for details.

◆ SGM7G-1A, 1E

Flange Dimensions Shaft End Dimensions Model Approx. LL LM LR KB1 KB2 KB3 IE KL1 KL3 L SGM7G-LA LB LC LE LG LH LZ S S1 Mass [kg] 1AA⊡A2C 4 42 _0.016 498 382 346 116 247 370 315 150 168 125 235 200 _0.046 220 20 270 13.5 50 65 55 +0.030 +0.011 1EADA2C 598 482 446 309 385 150 4 13.5 60 116 470 168 125 235 200 ____0 220 20 270 85

Note: Servomotors with Oil Seals have the same dimensions.

Refer to the following section for information on connectors. *■ G* ◆ SGM7G-09 to -1E with Holding Brakes (page 87)

Shaft End Specifications

♦ SGM7G-□□□□□□

Code	Specification
2	Straight without key
6	Straight with key and tap for one location (Key slot is JIS B1301-1996 fastening type.)

Shaft End Details					Servom	otor Mo	odel S	GM7G	-			
		03	05	09	13	20	30	44	55	75	1A	1E
Code: 2 (Straight without	Key)			1		1	1				
	LR	40*	40	58	58	58	79	79	113	113	116	116
	Q	30*	30	40	40	40	76	76	110	110	110	110
s dia.	S	16 _{-0.011} *	16 _0.011	24 _{-0.013} *	24 _{-0.013} *	24 _{-0.013}	35 +0.01	35 +0.01	42 _0.016	42 _0.016	42 _0.016	55 +0.030 +0.011
Code: 6 (Straight with Ke	y and	d Tap)										
	LR	40*	40	58	58	58	79	79	113	113	116	116
LB LB	Q	30*	30	40	40	40	76	76	110	110	110	110
	QK	20*	20	25	25	25	60	60	90	90	90	90
	S	16 _{-0.011} *	16 _0.011	24 _{-0.013} *	24 _{-0.013} *	24 _{-0.013}	35 +0.01	35 +0.01	42 -0.016	42 _0.016	42 _0.016	55 ^{+0.030} +0.011
	W	5	5	8*	8*	8	10	10	12	12	12	16
	Т	5	5	7*	7*	7	8	8	8	8	8	10
	U	3	3	4*	4*	4	5	5	5	5	5	6
⊥_	Ρ		M5 s	screw, Deptl	n: 12			screw, h: 25		/16 screv Depth: 32		M20 screw, Depth: 40

* The shaft end dimensions of these Servomotors are different from those of the Σ -V-series SGMGV Servomotors. Models that have the same installation dimensions as the SGMGV Servomotors are also available. Contact your Yaskawa representative for details.

Connector Specifications

SGM7G-03 and -05 without Holding Brakes

• Encoder Connector Specifications (24-bit Encoder)

Receptacle: CM10-R10P-D Applicable plug: Not provided by Yaskawa. Plug: CM10-AP10S-□-D for Right-angle Plug CM10-SP10S-□-D for Straight Plug (□ depends on the applicable cable size.) Manufacturer: DDK Ltd.

Servomotor Connector Specifications

Manufacturer: Japan Aviation Electronics Industry, Ltd.

SGM7G-09 to -1E without Holding Brakes

• Encoder Connector Specifications (24-bit Encoder)

Receptacle: CM10-R10P-D Applicable plug: Not provided by Yaskawa. Plug: CM10-AP10S-□-D for Right-angle Plug CM10-SP10S-□-D for Straight Plug (□ depends on the applicable cable size.) Manufacturer: DDK Ltd.

Servomotor Connector Specifications

Manufacturer: DDK Ltd.

- SGM7G-03 and -05 with Holding Brakes
- Encoder Connector Specifications (24-bit Encoder)

Receptacle: CM10-R10P-D Applicable plug: Not provided by Yaskawa. Plug: CM10-AP10S-□-D for Right-angle Plug CM10-SP10S-□-D for Straight Plug (□ depends on the applicable cable size.) Manufacturer: DDK Ltd.

Servomotor Connector Specifications

Manufacturer: Japan Aviation Electronics Industry, Ltd.

◆ SGM7G-09 to -1E with Holding Brakes

• Encoder Connector Specifications (24-bit Encoder)

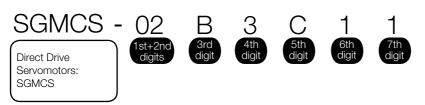
Receptacle: CM10-R10P-D Applicable plug: Not provided by Yaskawa. Plug: CM10-AP10S-□-D for Right-angle Plug CM10-SP10S-□-D for Straight Plug (□ depends on the applicable cable size.) Manufacturer: DDK Ltd.

Servomotor Connector Specifications

Manufacturer: DDK Ltd.

Brake Connector Specifications

Receptacle: CM10-R2P-D Applicable plug: Not provided by Yaskawa. Plug: CM10-AP2S-□-D for Right-angle Plug CM10-SP2S-□-D for Straight Plug (□ depends on the applicable cable size.) Manufacturer: DDK Ltd.


MEMO

Direct Drive Servomotors

SGMCS	9	0
SGMCV	11	1

SGMCS

Model Designations

1st+2nd digits Rated Output 3rd di

 Small 	 Small-Capacity, Coreless 					
Code	Specification					
02	2 N∙m					
04	4 N·m					
05	5 N·m					
07	7 N∙m					
08	8 N∙m					
10	10 N•m					
14	14 N•m					
16	16 N•m					
17	17 N•m					
25	25 N•m					
35	35 N•m					

	-	-	
digit	Servomotor	Outer	Diamet

Code	Specification							
В	135-mm dia.							
С	175-mm dia.							
D	230-mm dia.							
E	290-mm dia.							
М	280-mm dia.							
Ν	360-mm dia.							

4th digit Serial Encoder								
Code Specification								
3	20-bit single-turn absolute encoder							
D	20-bit incremental encoder							

tt Servomotor Outer Diameter 5th digit Design Revision Order

Code	Specification
А	Model with servomotor outer diameter code M or N
В	Model with servomotor outer diameter code E
С	Model with servomotor outer diameter code B, C, or D

6th digit Flange Servomotor Outer Diameter Code (3rd Digit) Code Mounting В C D E M N Non-load side ✓ ~ ✓ ✓ _ _ 1 ✓ ✓ Load side _ _ --З ---✓ √ Non-load side -Non-load side 4 ✓ ✓ ✓ ✓ _ _ (with cable on side)

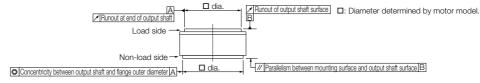
• Medium-Capacity, with Core

Code	Specification
45	45 N•m
80	80 N•m
1A	110 N•m
1E	150 N•m
2Z	200 N•m

7th digit	Options
-----------	---------

Code		Specification
1	Without options	

Note: Direct Drive Servomotors are not available with holding brakes.


Specifications and Ratings

Small-Capacity, Coreless Servomotors: Specifications

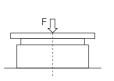
	200 V											
Мо	02B	05B (07B	04C	10C	14C 0	8D 17D) 25D	16E	35E		
Time Rating		Continuous										
Thermal Class								А				
Insulation Resis	tance					5	00 VD	C, 10 M	Ω min.			
Withstand Volta	ge					1,	500 VA	AC for 1	minute			
Excitation							Perma	inent m	agnet			
Mounting							Flang	ge-moui	nted			
Drive Method								rect driv				
Rotation Directi	on		Cour	iterclockv	wise (C	CW) fo	r forwar	d referenc	ce when vie	ewed from	n the loa	d side
Vibration Class*	1							V15				
Absolute Accur	асу							±15 s				
Repeatability								±1.3 s				
Protective Struc	cture ^{*2}				То	tally e	enclose	ed, self-	cooled, I	P42		
	Surrounding Air Tem	oerature				0°C t	o 40°C	C (with r	no freezin	g)		
	Surrounding Air H	lumidity		20% t	to 80%	% rela	tive hu	ımidity (with no c	condens	ation)	
Environmental Conditions	Installation Site	 Must be indoors and free of corrosive and explosive gases. Must be well-ventilated and free of dust and moisture. Must facilitate inspection and cleaning. Must have an altitude of 1,000 m or less. Must be free of strong magnetic fields. 					3.					
	Storage Environ	Store the Servomotor in the following environment if you store it with the power cable disconnected. Storage Temperature: -20°C to 60°C (with no freezing) Storage Humidity: 20% to 80% relative humidity (with no condensation)										
	Runout of Output Shaft Surface	mm	0.02									
	Runout at End of Output Shaft	mm		0.04								
Mechanical Tolerances ^{*3}	Parallelism between Mounting Surface and Output Shaft Surface				0.07 0.08							
	Concentricity between Output Shaft and Flange Outer Diameter				0.07 0.08							
Shock Resistance ^{*4}	Impact Accelera Rate at Flange	ition	490 m/s ²									
	Number of Impa	icts					1	2 times				
Vibration Resistance ^{*5}	Vibration Accele Rate at Flange	eration	49 m/s ²									
Applicable SER PACKs			- 2R8A 5R5A					5A				

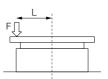
*1. A vibration class of V15 indicates a vibration amplitude of 15 µm maximum on the Servomotor without a load at the rated motor speed.

*2. The hollow hole section, motor mounting surface, output shaft surface, and gap around the rotating part of the shaft are excluded. Protective structure specifications apply only when the special cable is used.
*3. Refer to the following figure for the relevant locations on the Servomotor. Refer to the dimensional drawings of the individual Servomotors for more information on tolerances.

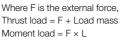
*4. The shock resistance for shock in the vertical direction when the Servomotor is mounted with the shaft in a horizontal position is given in the above table.

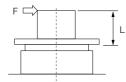
- Shock Applied to the Servomotor
- *5. The vertical, side-to-side, and front-to-back vibration resistance for vibration in three directions when the Servomotor is mounted with the shaft in a horizontal position is given in the above table. The strength of the vibration that the Servomotor can withstand depends on the application. Always confirm the vibration acceleration rate.


Voltage				200 V									
Model SGMCS-			02B	05B	07B	04C	10C	14C	08D	17D	25D	16E	35E
Rated (Dutput ^{*1}	W	42	105	147	84	209	293	168	356	393	335	550
Rated 1	Forque ^{*1, *2}	N∙m	2.00	5.00	7.00	4.00	10.0	14.0	8.00	17.0	25.0	16.0	35.0
Instanta Maximu	aneous ım Torque ^{*1}	N∙m	6.00	15.0	21.0	12.0	30.0	42.0	24.0	51.0	75.0	48.0	105
Stall To	rque ^{*1}	N∙m	2.05	5.15	7.32	4.09	10.1	14.2	8.23	17.4	25.4	16.5	35.6
Rated (Current ^{*1}	Arms	1.8	1.7	1.4	2	2.2	2.8	1.9	2.5	2.6	3.3	3.5
Instanta Maximu	aneous Im Current ^{*1}	Arms	5.4 5.1 4.1		7	<i>.</i> 0	8.3	5.6	7.5	8.0	9.4	10.0	
Rated N Speed*		min ⁻¹	200			200		200 15		150	200	150	
Maximu Speed [*]	Im Motor	min ⁻¹	5			500	400	300	500	350	250	500	250
Torque	Constant	N•m/Arms	1.18	3.17	5.44	2.04	5.05	5.39	5.10	7.79	10.8	5.58	11.1
Motor N Inertia	Noment of	×10 ⁻⁴ kg·m ²	28.0	51.0	77.0	77.0	140	220	285	510	750	930	1430
Rated F	Power Rate ^{*1}	kW/s	1.43	4.90	6.36	2.08	7.14	8.91	2.25	5.67	8.33	2.75	8.57
Rated A Acceler	Angular ation Rate ^{*1}	rad/s ²	710	980	910	520	710	640	280	30	30	170	240
Heat Si	nk Size	mm	350	× 350	× 12	450	× 450 x	× 12	550	× 550	650×6	50 × 12	
	ble Load Mom Moment of Ind			10 t	imes		5 times			3	times		
Allow- able	Allowable Thrust Load	N		1500			3300		4000			11000	
able Load ^{*3}	Allowable Moment Load	N∙m	40	50	64	70	75	90	93	103	135	250	320

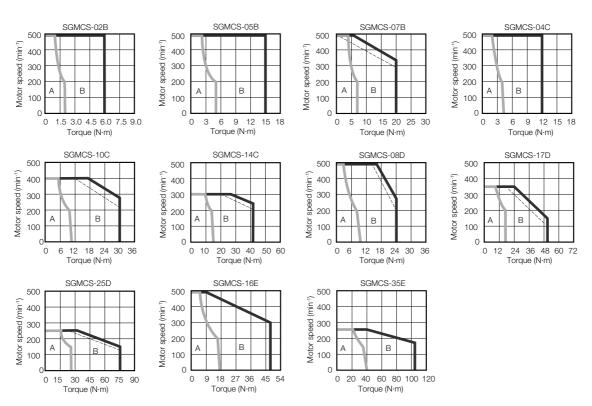

Small-Capacity, Coreless Servomotors: Ratings

*1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. The values for other items are at 20°C. These are typical values.


*2. The rated torques are the continuous allowable torque values at a surrounding air temperature of 40°C with a steel heat sink of the dimensions given in the table.


*3. The thrust loads and moment loads that are applied while a Servomotor is operating are roughly classified into the following patterns. Design the machine so that the thrust loads or moment loads will not exceed the values given in the table.

Where F is the external force, Thrust load = F + Load mass Moment load = 0


Where F is the external force Thrust load = Load mass Moment load = $F \times L$

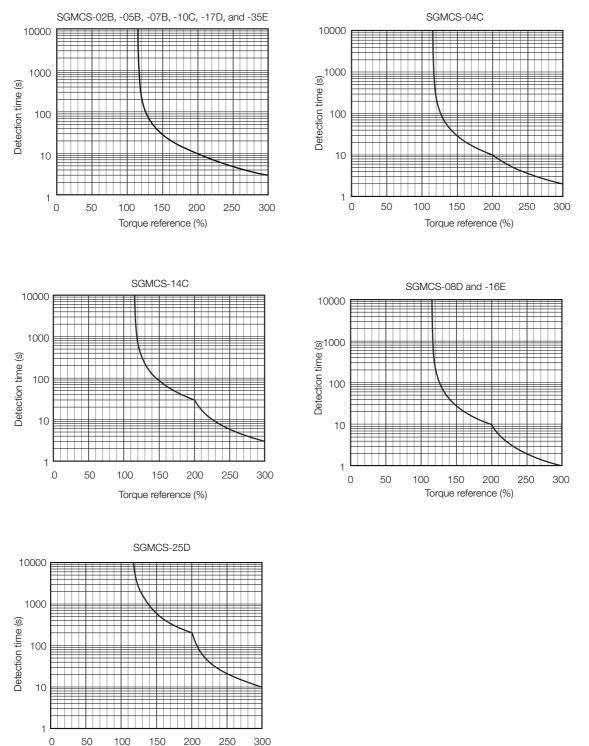
Note: For the bearings used in these Servomotors, the loss depends on the bearing temperature. The amount of heat loss is higher at low temperatures.

Small-Capacity, Coreless Servomotors: Torque-Motor Speed Characteristics

A : Continuous duty zone _____ (solid lines): With three-phase 200-V input

B : Intermittent duty zone ----- (dotted lines): With single-phase 100-V input

Note: 1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. These are typical values.


2. The characteristics in the intermittent duty zone depend on the power supply voltage.

3. If the effective torque is within the allowable range for the rated torque, the Servomotor can be used within the intermittent duty zone.

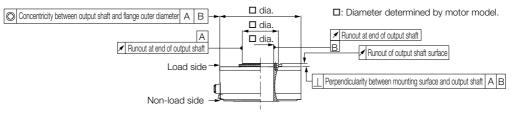
4. If you use a Servomotor Main Circuit Cable that exceeds 20 m, the intermittent duty zone in the torquemotor speed characteristics will become smaller because the voltage drop increases.

Small-Capacity, Coreless Servomotors: Servomotor Overload Protection Characteristics

The overload detection level is set for hot start conditions with a Servomotor surrounding air temperature of 40°C.

Note: The above overload protection characteristics do not mean that you can perform continuous duty operation with an output of 100% or higher. Use the Servomotor so that the effective torque remains within the continuous duty zone given in *Small-Capacity, Coreless Servomotors: Torque-Motor Speed Characteristics* on page 94.

Torque reference (%)


Medium-Capacity Servomotors with Cores: Specifications

	Voltage			200 V								
Мо	del SGM	CS-		45M	80M	1AM	80N	1EN	2ZN			
Time Rating	Continuous											
Thermal Class					F							
Insulation Resis	stance					500 VDC, -	10 M Ω min.					
Withstand Volta	ige					1,500 VAC	for 1 minute	e				
Excitation						Permaner	nt magnet					
Mounting						Flange-r	nounted					
Drive Method							t drive					
Rotation Directi	on			Counterc the load s		CW) for forw	vard referen	nce when vi	ewed from			
Vibration Class	*1					V	15					
Absolute Accur	acy					±1	5 s					
Repeatability						±1.	3 s					
Protective Strue	cture ^{*2}				Totall	y enclosed,	self-cooled	I, IP44				
		ing Air Tempera	ature		0°0	C to 40°C (w	ith no freez	zing)				
		ding Air Hur		20		elative humic		0,	tion)			
Environmental Conditions	Installation Site			 Must be indoors and free of corrosive and explosive gases. Must be well-ventilated and free of dust and moisture. Must facilitate inspection and cleaning. Must have an altitude of 1,000 m or less. Must be free of strong magnetic fields. 								
	Storage Environment			Store the Servomotor in the following environment if you store it with the power cable disconnected. Storage Temperature: -20°C to 60°C (with no freezing) Storage Humidity: 20% to 80% relative humidity (with no condensation)								
	Runout Shaft S	of Output urface	mm	0.02								
	Runout Output	at End of Shaft	mm	0.04								
Mechanical Tolerances ^{*3}	Parallelism between Mounting Surface and mm Output Shaft Surface			_								
TOIEFAILCES	Concentricity between Output Shaft and mm Flange Outer Diameter		0.08									
	Perpendicularity between Mounting Sur- mm face and Output Shaft			0.08								
Shock Resistance ^{*4}	Rate at Flance			490 m/s ²								
	Number of Impacts					2 tir	mes					
Vibration Resistance ^{*5}	Vibratic Rate at	n Accelera [.] Flange	tion	24.5 m/s ²								
Applicable SER PACKs	VO-	SGD7S- SGD7W-		7R6A 7R6A	120A	180A	120A -	20	0 A			

*1. A vibration class of V15 indicates a vibration amplitude of 15 μm maximum on the Servomotor without a load at the rated motor speed.

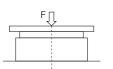
*2. This does not apply to the shaft opening. Protective structure specifications apply only when the special cable is used.

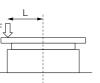
*3. Refer to the following figure for the relevant locations on the Servomotor. Refer to the dimensional drawings of the individual Servomotors for more information on tolerances.

*4. The shock resistance for shock in the vertical direction when the Servomotor is mounted with the shaft in a horizontal position is given in the above table.

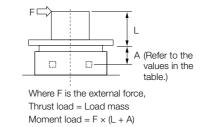
Shock Applied to the Servomotor

*5. The vertical, side-to-side, and front-to-back vibration resistance for vibration in three directions when the Servomotor is mounted with the shaft in a horizontal position is given in the above table. The strength of the vibration that the Servomotor can withstand depends on the application. Always confirm the vibration acceleration rate.

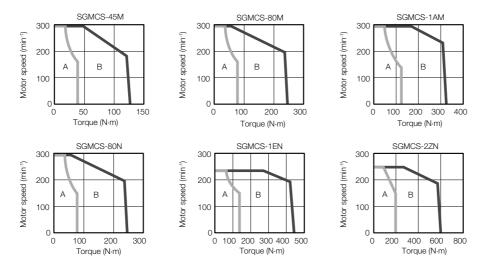

Medium-Capacity Servomotors with Cores: Ratings


	Voltage	200 V							
	Model SGMCS-	45M	80M	1AM	80N	1EN	2ZN		
Rated Outp	put ^{*1}	W	707	1260	1730	1260	2360	3140	
Rated Torq	ue ^{*1, *2}	N∙m	45.0	80.0	110	80.0	150	200	
Instantaneo	ous Maximum Torque ^{*1}	N∙m	135	240	330	240	450	600	
Stall Torque)*1	N∙m	45.0	80.0	110	80.0	150	200	
Rated Curr	ent ^{*1}	Arms	5.8	9.7	13.4	9.4	17.4	18.9	
Instantaneo	ous Maximum Current ^{*1}	Arms	17.0	28.0	42.0	28.0	56.0	56.0	
Rated Moto	or Speed ^{*1}	min⁻¹	150			150			
Maximum N	Notor Speed ^{*1}	min⁻¹	300			300 250			
Torque Cor	istant	N•m/Arms	8.39	8.91	8.45	9.08	9.05	11.5	
Motor Mom	nent of Inertia	$\times 10^{-4} \text{ kg} \cdot \text{m}^2$	388	627	865	1360	2470	3060	
Rated Pow	er Rate ^{*1}	kW/s	52.2	102	140	47.1	91.1	131	
Rated Ang	ular Acceleration Rate ^{*1}	rad/s ²	1160	1280	1270	588	607	654	
Heat Sink S	Size	mm	750 × 750 × 45						
	Allowable Load Moment of Inertia (Motor Moment of Inertia Ratio)			3 times					
Allowable	А	mm	33			37.5			
Load ^{*3}	Allowable Thrust Load	Ν	9000			16000			
2000	Allowable Moment Load	N∙m		180			350		

*1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 20°C. These are typical values.

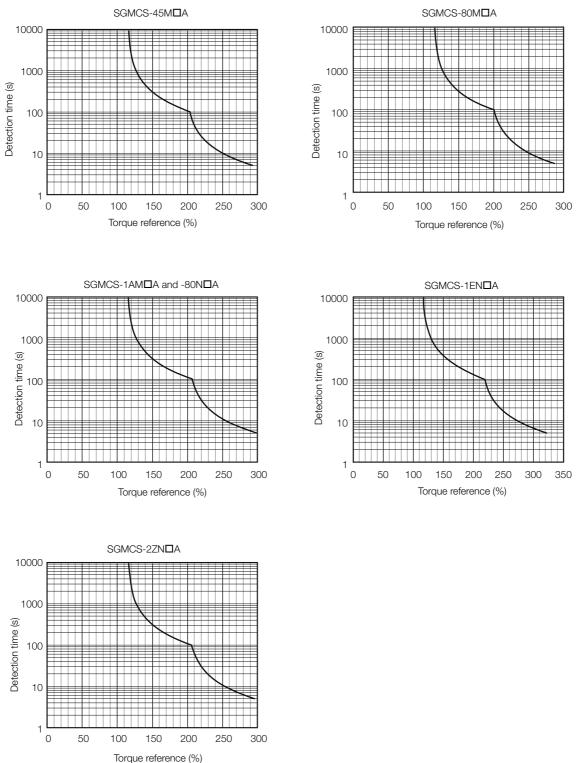

*2. The rated torques are the continuous allowable torque values at a surrounding air temperature of 40°C with a steel heat sink of the dimensions given in the table.

*3. The thrust loads and moment loads that are applied while a Servomotor is operating are roughly classified into the following patterns. Design the machine so that the thrust loads or moment loads will not exceed the values given in the table.


Where F is the external force, Thrust load = F + Load mass Moment load = 0 Where F is the external force, Thrust load = F + Load mass Moment load = $F \times L$

Note: For the bearings used in these Servomotors, the loss depends on the bearing temperature. The amount of heat loss is higher at low temperatures.

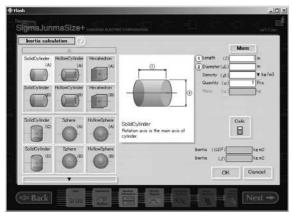
Medium-Capacity Servomotors with Cores: Torque-Motor Speed Characteristics


- A : Continuous duty zone
- B : Intermittent duty zone

- Note: 1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 20°C. These are typical values.
 - 2. If the effective torque is within the allowable range for the rated torque, the Servomotor can be used within the intermittent duty zone.
 - 3. If you use a Servomotor Main Circuit Cable that exceeds 20 m, the intermittent duty zone in the torquemotor speed characteristics will become smaller because the voltage drop increases.

Medium-Capacity Servomotors with Cores: Servomotor Overload Protection Characteristics

The overload detection level is set for hot start conditions with a Servomotor surrounding air temperature of 40°C.


Note: The above overload protection characteristics do not mean that you can perform continuous duty operation with an output of 100% or higher. Use the Servomotor so that the effective torque remains within the continuous duty zone given in *Medium-Capacity Servomotors with Cores: Torque-Motor Speed Characteristics* on page 99.

Load Moment of Inertia

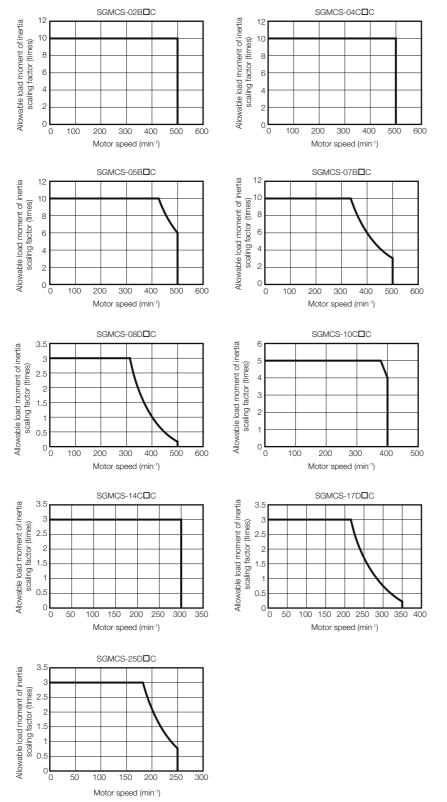
The load moment of inertia indicates the inertia of the load. The larger the load moment of inertia, the worse the response. If the moment of inertia is too large, operation will become unstable.

The allowable size of the load moment of inertia (J_L) for the Servomotor is restricted. Refer to *Small-Capacity, Coreless Servomotors: Ratings* (page 93) or *Medium-Capacity Servomotors with Cores: Specifications* (page 96). This value is provided strictly as a guideline and results depend on Servomotor driving conditions.

Use the SigmaJunmaSize+ AC Servo Drive Capacity Selection Program to check the driving conditions. Contact your Yaskawa representative for information on this program.

An Overvoltage Alarm (A.400) is likely to occur during deceleration if the load moment of inertia exceeds the allowable load moment of inertia. SERVOPACKs with a built-in regenerative resistor may generate a Regenerative Overload Alarm (A.320). Perform one of the following steps if this occurs.

- Reduce the torque limit.
- Reduce the deceleration rate.
- Reduce the maximum motor speed.
- Install an External Regenerative Resistor if the alarm cannot be cleared using the above steps.

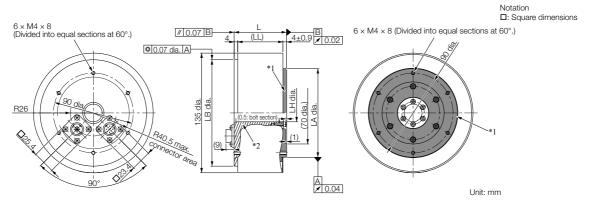

Regenerative resistors are not built into SERVOPACKs for 400-W Servomotors or smaller Servomotors. Even for SERVOPACKs with built-in regenerative resistors, an External Regenerative Resistor is required if the energy that results from the regenerative driving conditions exceeds the allowable loss capacity (W) of the built-in regenerative resistor.

Allowable Load Moment of Inertia Scaling Factor for SERVO-PACKs without Built-in Regenerative Resistors

The following graphs show the allowable load moment of inertia scaling factor of the motor speed for SERVOPACKs without built-in regenerative resistors when an External Regenerative Resistor is not connected (applicable SERVOPACK: SGD7S-2R8A).

If the Servomotor exceeds the allowable load moment of inertia, an overvoltage alarm may occur in the SERVOPACK.

These graphs provide reference data for deceleration at the rated torque or higher with a 200-VAC power supply input.

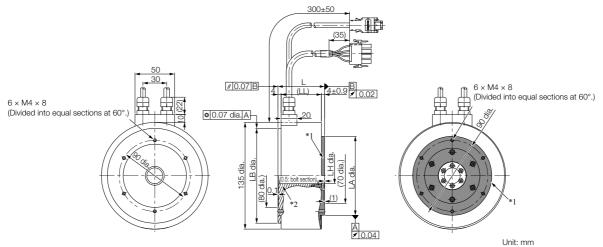


External Dimensions

Small-Capacity, Coreless Servomotors

♦ SGMCS-□□B

Flange Specification 1


*1. The shaded section indicates the rotating parts.

*2. The hatched section indicates the non-rotating parts.

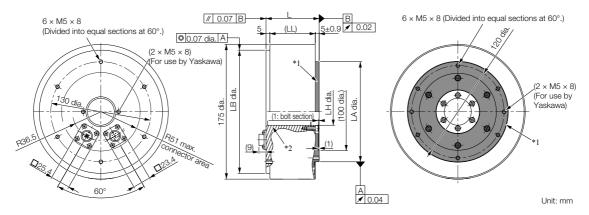
Note: Values in parentheses are reference dimensions.

Model SGMCS-	L	(LL)	LB	LH	LA	Approx. Mass [kg]
02B□C11	59	51	120 .0.035	20 +0.4 0	100 0 -0.035	4.8
05B D C11	88	80	120 0 -0.035	20 +0.4 0	100 0 -0.035	5.8
07B D C11	128	120	120 .0.035	20 +0.4 0	100 0	8.2

• Flange Specification 4

*1. The shaded section indicates the rotating parts.

*2. The hatched section indicates the non-rotating parts.

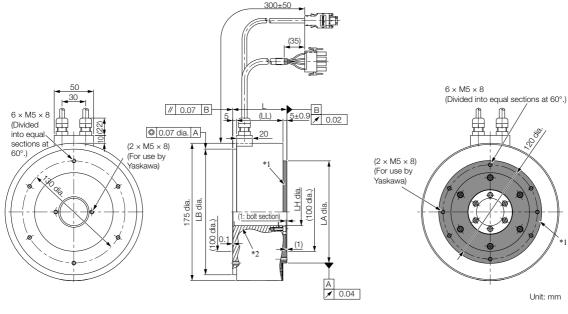

Note: Values in parentheses are reference dimensions.

Model SGMCS-	L	(LL)	LB	LH	LA	Approx. Mass [kg]
02B D C41	59	51	120 0 -0.035	20 +0.4 0	100 0	4.8
05B □ C41	88	80	120 -0.035	20 +0.4	100 0	5.8
07B □ C41	128	120	120 0	20 +0.4	100 0	8.2

Refer to the following section for information on connectors. *Connector Specifications* (page 109)

♦ SGMCS-□□C

• Flange Specification 1


*1. The shaded section indicates the rotating parts.

*2. The hatched section indicates the non-rotating parts.

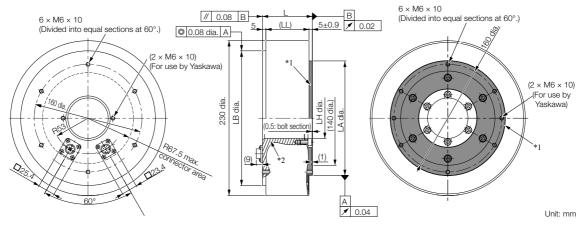
Note: Values in parentheses are reference dimensions.

Model SGMCS-	L	(LL)	LB	LH	LA	Approx. Mass [kg]
04C□C11	69	59	160 0 -0.040	35 +0.4	130 0 -0.040	7.2
10C□C11	90	80	160 0 -0.040	35 +0.4	130 0 -0.040	10.2
14C□C11	130	120	160 .0.040	35 +0.4	130 .0.040	14.2

• Flange Specification 4

*1. The shaded section indicates the rotating parts.

*2. The hatched section indicates the non-rotating parts.

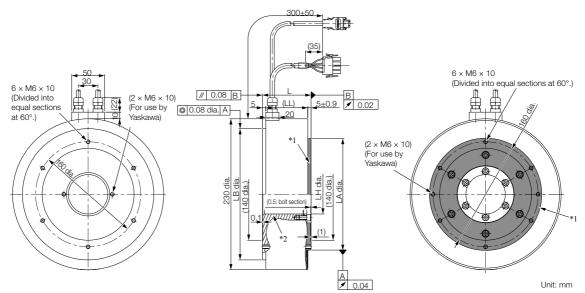

Note: Values in parentheses are reference dimensions.

Model SGMCS-	L	(LL)	LB	LH	LA	Approx. Mass [kg]
04C□C41	69	59	160 0 -0.040	35 0+0.4	130 -0.040	7.2
10C□C41	90	80	160 0 -0.040	35 +0.4	130 -0.040	10.2
14C□C41	130	120	160 0 -0.040	35 +0.4	130 -0.040	14.2

Refer to the following section for information on connectors.

♦ SGMCS-□□D

• Flange Specification 1


*1. The shaded section indicates the rotating parts.

*2. The hatched section indicates the non-rotating parts.

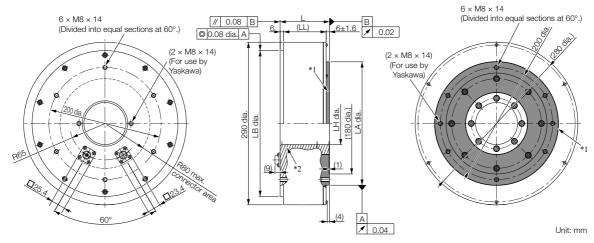
Note: Values in parentheses are reference dimensions.

Model SGMCS-	L	(LL)	LB	LH	LA	Approx. Mass [kg]
08D □ C11	74	64	200 0 -0.046	60 +0.4 0	170 0.040	14.0
17D0C11	110	100	200 0 -0.046	60 +0.4 0	170 0.040	22.0
25D □ C11	160	150	200 0 -0.046	60 +0.4 0	170 0.040	29.7

• Flange Specification 4

*1. The shaded section indicates the rotating parts.

*2. The hatched section indicates the non-rotating parts.

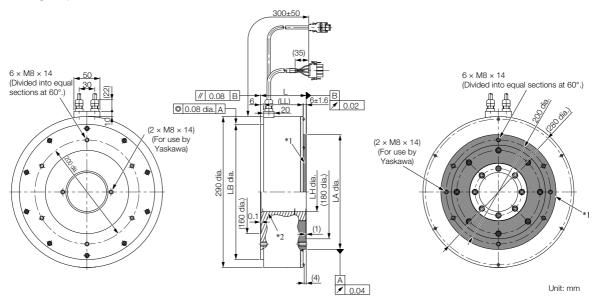

Note: Values in parentheses are reference dimensions.

Model SGMCS-	L	(LL)	LB	LH	LA	Approx. Mass [kg]
08D D C41	74	64	200 0 -0.046	60 +0.4 0	170 0.040	14.0
17D D C41	110	100	200 0 -0.046	60 +0.4	170 0 -0.040	22.0
25D D C41	160	150	200 0 -0.046	60 +0.4	170 0.040	29.7

Refer to the following section for information on connectors. *Connector Specifications* (page 109)

♦ SGMCS-□□E

• Flange Specification 1


*1. The shaded section indicates the rotating parts.

*2. The hatched section indicates the non-rotating parts.

Note: Values in parentheses are reference dimensions.

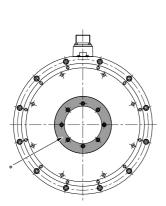
Model SGMCS-	L	(LL)	LB	LH	LA	Approx. Mass [kg]
16E D B11	88	76	260 .0.052	75 +0.4	220 0 -0.046	26.0
35E D B11	112	100	260 .0.052	75 +0.4	220 ⁰ _{-0.046}	34.0

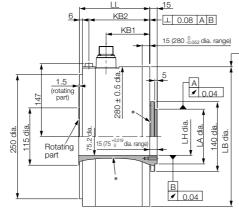
• Flange Specification 4

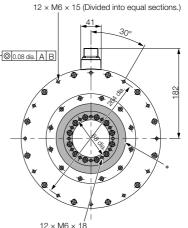
*1. The shaded section indicates the rotating parts.

*2. The hatched section indicates the non-rotating parts.

Note: Values in parentheses are reference dimensions.

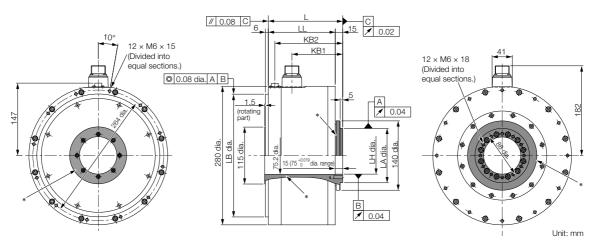

Model SGMCS-	L	(LL)	LB	LH	LA	Approx. Mass [kg]
16E D B41	88	76	260 0 -0.052	75 0+0.4	220 0 -0.046	26.0
35E D B41	112	100	260 0 -0.052	75 0+0.4	220 0 -0.046	34.0


Refer to the following section for information on connectors.


Medium-Capacity Servomotors with Cores

♦ SGMCS-□□M

• Flange Specification 1

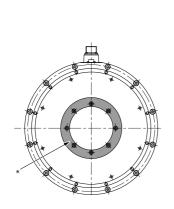


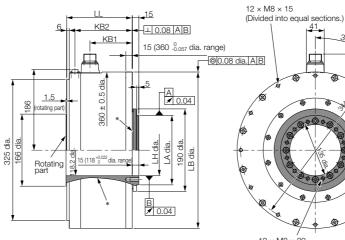
12 × M6 × 18 (Divided into equal sections.) Unit: mm

* The shaded section indicates the rotating parts.

Model SGMCS-	LL	KB1	KB2	LB	LH	LA	Approx. Mass [kg]
45MDA11	141	87.5	122	280 0 -0.052	75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	110 ⁰ -0.035	38
80MDA11	191	137.5	172	280 0 -0.052	75 +0.019	110 ⁰ -0.035	45
1AMDA11	241	187.5	222	280 .0.052	75 +0.019	110 ⁰ -0.035	51

• Flange Specification 3

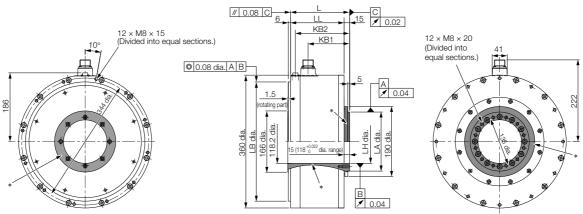

* The shaded section indicates the rotating parts.


Model SGMCS-	L	LL	KB1	KB2	LB	LH	LA	Approx. Mass [kg]
45M D A31	150	135	102.5	137	248 0 -0.046	75 +0.019	110 ⁰ -0.035	38
80MDA31	200	185	152.5	187	248 .0.046	75 +0.019	110 ⁰ -0.035	45
1AMDA31	250	235	202.5	237	248 .0.046	75 0+0.019	110 ⁰ -0.035	51

Refer to the following section for information on connectors.

♦ SGMCS-□□N

• Flange Specification 1


 $12 \times M8 \times 20$ (Divided into equal sections.) Unit: mm

222

* The shaded section indicates the rotating parts.

Model SGMCS-	LL	KB1	KB2	LB	LH	LA	Approx. Mass [kg]
80N D A11	151	98	132	360 .0.057	118 0+0.022	160 0.040	50
1EN D A11	201	148	182	360 .0.057	118 0+0.022	160 .0.040	68
2ZNDA11	251	198	232	360 0 -0.057	118 +0.022	160 0 -0.040	86

• Flange Specification 3

Unit: mm

* The shaded section indicates the rotating parts.

Model SGMCS-	L	LL	KB1	KB2	LB	LH	LA	Approx. Mass [kg]
80NDA31	160	145	113	147	323 0 -0.057	118 0 +0.022	160 0 -0.040	50
1ENDA31	210	195	163	197	323 0 -0.057	118 ^{+0.022}	160 0 -0.040	68
2ZNDA31	260	245	213	247	323 _0.057	118 +0.022 0	160 0-0.040	86

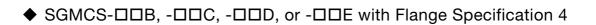
Refer to the following section for information on connectors. Connector Specifications (page 109)

108

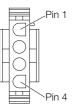
Connector Specifications

- ◆ SGMCS-□□B, -□□C, -□□D, or -□□E with Flange Specification 1
- Servomotor Connector Specifications

Model: JN1AS04MK2R Manufacturer: Japan Aviation Electronics Industry, Ltd.

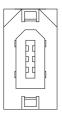

Mating connector: JN1DS04FK1 (Not provided by Yaskawa.)

Encoder Connector Specifications



Model: JN1AS10ML1-R Manufacturer: Japan Aviation Electronics Industry, Ltd.

Mating connector: JN1DS10SL1 (Not provided by Yaskawa.)


Servomotor Connector Specifications

Model • Plug: 350779-

- Plug: 350779-1
- Pins: 350561-3 or 350690-3 (No.1 to 3)
- Ground pin: 350654-1 or 350669-1 (No. 4) Manufacturer: Tyco Electronics Japan G.K.
- Pin 4
 - Mating Connector • Cap: 350780-1
 - Socket: 350570-3 or 350689-3

Encoder Connector Specifications

Model: 55102-0600 Manufacturer: Molex Japan Co., Ltd.

Mating connector: 54280-0609

◆ SGMCS-□□M or -□□N with Flange Specification 1 or 3

Servomotor Connector Specifications

Model: CE05-2A18-10PD Manufacturer: DDK Ltd.

Mating Connector Plug: CE05-6A18-10SD-B-BSS Cable clamp: CE3057-10A-□(D265)

Encoder Connector Specifications

Model: JN1AS10ML1 Manufacturer: Japan Aviation Electronics Industry, Ltd.

Mating connector: JN1DS10SL1

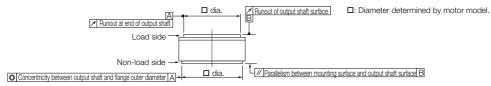
SGMCV

Model Designations

Direct	t Drive motors: CV)4 st+2nd digits	B 3rd digit	4th digit	A 5th digit	f 6th digit	7 th digit
1st+2r	nd digits Rated O	utput	4th dig	it Serial Er	ncoder		6th di	git Flange
Code	Specification		Code	Sp	pecification	l	Code	Mounting
04	4 N∙m		E	22-bit single	e-turn absolu	ite encoder	1	Non-load side
08	8 N∙m		I	22-bit multi	iturn absolut	te encoder	4	Non-load side (with cable on side)
10	10 N·m							<u>.</u>
14	14 N·m		5th dig	t Design F	Revision Or	rder	7th di	git Options
17	17 N•m		A				Code	
25	25 N•m		~				Code	
							1	Without options
3rd dig	it Servomotor Ou	ter Dia	meter				5	High machine precision (runout at end of shaft and runout of shaft surface: 0.01 mm)
		I						
Code	Specification							
В	135-mm dia.							
С	175-mm dia.							

Note: Direct Drive Servomotors are not available with holding brakes.

Specifications and Ratings


Specifications

Voltage				200 V						
Model SGMCV-			04B	10B	14B	08C	17C	25C		
Time Rating			Continuous							
Thermal Class			A							
Insulation Resistance			500 VDC, 10 MΩ min.							
Withstand Volta	age			1,500 VAC for 1 minute						
Excitation			Permanent magnet							
Mounting			Flange-mounted							
Drive Method			Direct drive							
Rotation Direction			Counterclockwise (CCW) for forward reference when viewed from the load side							
Vibration Class ^{*1}			V15							
Absolute Accuracy			±15 s							
Repeatability			±1.3 s							
Protective Strue	cture ^{*2}			Totally enclosed, self-cooled, IP42						
	Surrounding Air Temperature			0°C to 40°C (with no freezing)						
	Surrounding Air Humidity			20% to 80% relative humidity (with no condensation)						
Environmental Conditions	Storage Environment			 Must be well-ventilated and free of dust and moisture. Must facilitate inspection and cleaning. Must have an altitude of 1,000 m or less. Must be free of strong magnetic fields. Store the Servomotor in the following environment if you store i with the power cable disconnected. Storage Temperature: -20°C to 60°C (with no freezing) Storage Humidity: 20% to 80% relative humidity (with no condensation) 						
Mechanical Tolerances ^{*3}	Runout of Output Shaft Sur- face		mm	0.02 (0.01 for high machine precision option)						
	Runout at End of Output Shaft		mm	0.04 (0.01 for high machine precision option)					n)	
	Parallelism between Mounting Surface and Output Shaft Surface		mm	0.07						
	Concentricity between Output Shaft and Flange Outer Diameter		mm	0.07						
Shock	Impact Acceleration Rate at Flange			490 m/s ²						
Resistance ^{*4}	Number of Impacts			2 times						
Vibration Vibration Acceleration Rate at Resistance ^{*5} Flange			49 m/s ²							
Applicable SERVO-SGD7S-PACKsSGD7W-			2R	8A	5R5A	2R8A	5R5A	7R6A		

*1. A vibration class of V15 indicates a vibration amplitude of 15 μm maximum on the Servomotor without a load at the rated motor speed.

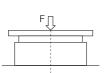
*2. The hollow hole section, motor mounting surface, output shaft surface, and gap around the rotating part of the shaft are excluded. Protective structure specifications apply only when the special cable is used.

*3. Refer to the following figure for the relevant locations on the Servomotor. Refer to the dimensional drawings of the individual Servomotors for more information on tolerances.

*4. The shock resistance for shock in the vertical direction when the Servomotor is mounted with the shaft in a horizontal position is given in the above table.

+ Vertical

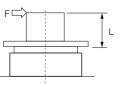
Shock Applied to the Servomotor
*5. The vertical, side-to-side, and front-to-back vibration resistance for vibration in three directions when the Servomotor is mounted with the shaft in a horizontal position is given in the above table. The strength of the vibration that the Servomotor can withstand depends on the application. Always confirm the vibration acceleration rate.


Ratings

Voltage			200 V						
		04B	10B	14B	08C	17C	25C		
Rated Output	*1	W	126	314	440	251	534	785	
Rated Torque	Rated Torque ^{*1, *2}		4.00	10.0	14.0	8.00	17.0	25.0	
Instantaneous Maximum Torque*1		N∙m	12.0	30.0	42.0	24.0	51.0	75.0	
Stall Torque ^{*1}		N∙m	4.00	10.0	14.0	8.00	17.0	25.0	
Rated Current ^{*1}		Arms	2.0 2.8 4.6			2.4 4.5			
Instantaneous Maximum Current*1		Arms	6.4	8.9	14.1	8.6	14.7	13.9	
Rated Motor Speed ^{*1}		min ⁻¹	300			300			
Maximum Motor Speed ^{*1}		min ⁻¹	600			600		500	
Torque Constant		N•m/Arms	2.21	3.81	3.27	3.52	4.04	6.04	
Motor Moment of Inertia		×10 ⁻⁴ kg·m ²	16.2	25.2	36.9	56.5	78.5	111	
Rated Power Rate ^{*1}		kW/s	9.88	39.7	53.1	11.3	36.8	56.3	
Rated Angular Acceleration Rate ^{*1}		rad/s ²	2470	3970	3790	1420	2170	2250	
Heat Sink Size		mm	350 × 350 × 12			450 × 450 × 12			
Allowable Load Moment of Inertia (Motor Moment of Inertia Ratio)		•	25 times	40 times	45 times	15 times	25 times	25 times	
Allowable Load ^{*3}	Allowable Thrust Load	N	1500			3300			
	Allowable Moment Load	N∙m	45	55	65	92	98	110	

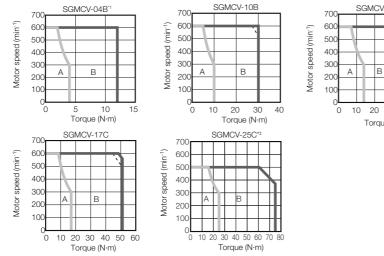
*1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. The values for other items are at 20°C. These are typical values.

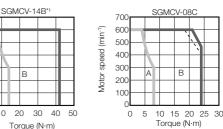
*2. The rated torques are the continuous allowable torque values at a surrounding air temperature of 40°C with a steel heat sink of the dimensions given in the table.


*3. The thrust loads and moment loads that are applied while a Servomotor is operating are roughly classified into the following patterns. Design the machine so that the thrust loads or moment loads will not exceed the values given in the table.

Where F is the external force, Thrust load = F + Load mass Moment load = 0

Where F is the external force, Thrust load = F + Load mass Moment load = F \times L

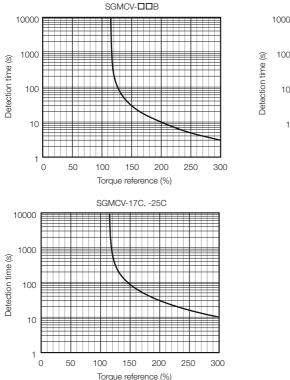


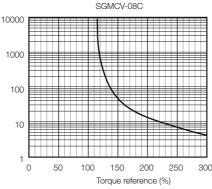

Where F is the external force, Thrust load = Load mass Moment load = $F \times L$

Note: For the bearings used in these Servomotors, the loss depends on the bearing temperature. The amount of heat loss is higher at low temperatures.

Torque-Motor Speed Characteristics

A : Continuous duty zone (solid lines): With three-phase 200-V or single-phase 230-V input : Intermittent duty zone ------- (dotted lines): With single-phase 200-V input

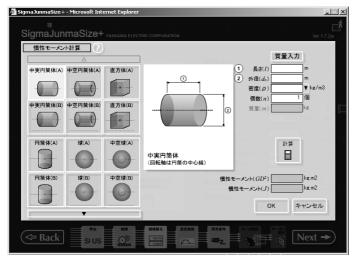

 $\ast 1.$ The characteristics are the same for three-phase 200 V and single-phase 200 V.


*2. Contact your Yaskawa representative for information on the SGMCV-25C.

- Note: 1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. These are typical values.
 - 2. The characteristics in the intermittent duty zone depend on the power supply voltage.
 - 3. If you use a Servomotor Main Circuit Cable that exceeds 20 m, the intermittent duty zone in the torquemotor speed characteristics will become smaller because the voltage drop increases.

Servomotor Overload Protection Characteristics

The overload detection level is set for hot start conditions with a Servomotor surrounding air temperature of 40°C.


Note: The above overload protection characteristics do not mean that you can perform continuous duty operation with an output of 100% or higher. Use the Servomotor so that the effective torque remains within the continuous duty zone given in *Torque-Motor Speed Characteristics* on page 115.

Load Moment of Inertia

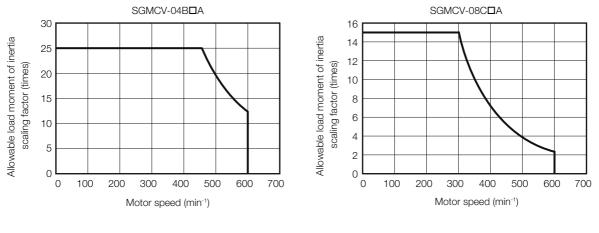
The load moment of inertia indicates the inertia of the load. The larger the load moment of inertia, the worse the response. If the moment of inertia is too large, operation will become unstable.

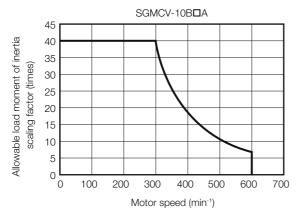
The allowable size of the load moment of inertia (J_L) for the Servomotor is restricted. Refer to *Ratings* (page 114). This value is provided strictly as a guideline and results depend on Servomotor driving conditions.

Use the SigmaJunmaSize+ AC Servo Drive Capacity Selection Program to check the driving conditions. Contact your Yaskawa representative for information on this program.

An Overvoltage Alarm (A.400) is likely to occur during deceleration if the load moment of inertia exceeds the allowable load moment of inertia. SERVOPACKs with a built-in regenerative resistor may generate a Regenerative Overload Alarm (A.320). Perform one of the following steps if this occurs.

- Reduce the torque limit.
- Reduce the deceleration rate.
- Reduce the maximum motor speed.
- Install an External Regenerative Resistor if the alarm cannot be cleared using the above steps.

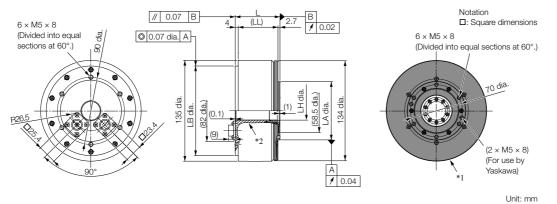

Regenerative resistors are not built into SERVOPACKs for 400-W Servomotors or smaller Servomotors. Even for Servomotors with built-in regenerative resistors, an External Regenerative Resistor is required if the energy that results from the regenerative driving conditions exceeds the allowable loss capacity (W) of the built-in regenerative resistor.


Allowable Load Moment of Inertia Scaling Factor for SERVO-PACKs without Built-in Regenerative Resistors

The following graphs show the allowable load moment of inertia scaling factor of the motor speed for SERVOPACKs without built-in regenerative resistors when an External Regenerative Resistor is not connected (applicable SERVOPACK: SGD7S-2R8A).

If the Servomotor exceeds the allowable load moment of inertia, an overvoltage alarm may occur in the SERVOPACK.

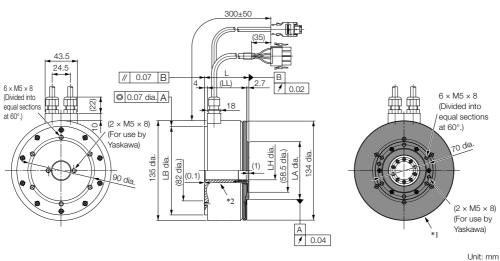
These graphs provide reference data for deceleration at the rated torque or higher with a 200-VAC power supply input.



External Dimensions

♦ SGMCV-□□B

• Flange Specification 1


*1. The shaded section indicates the rotating parts.

*2. The hatched section indicates the non-rotating parts.

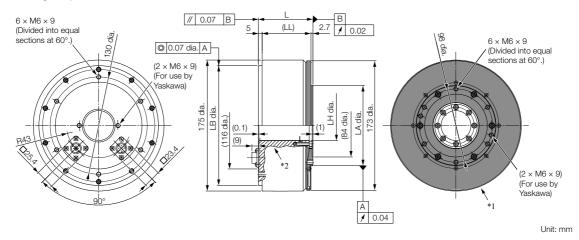
Note: Values in parentheses are reference dimensions.

Model SGMCV-	L	(LL)	LB	LH	LA	Approx. Mass [kg]
04B D A11	60	53.3	120 0	$25^{+0.3}_{+0.1}$	78 -0.030	5.0
10B D A11	85	78.3	120 0	25 +0.3 +0.1	78 -0.030	6.5
14B D A11	115	108.3	120 -0.035	25 +0.3 +0.1	78 -0.030	9.0

• Flange Specification 4

*1. The shaded section indicates the rotating parts.

*2. The hatched section indicates the non-rotating parts.

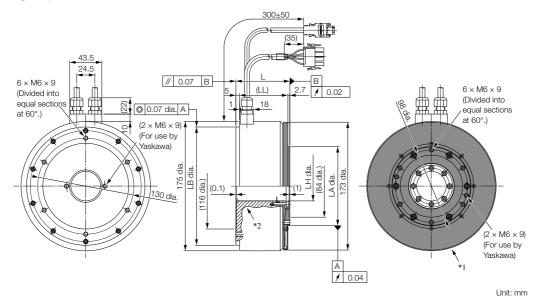

Note: Values in parentheses are reference dimensions.

Model SGMCV-	L	(LL)	LB	LH	LA	Approx. Mass [kg]
04B D A41	60	53.3	120 0	$25^{+0.3}_{+0.1}$	78 .0.030	5.0
10B D A41	85	78.3	120 0	$25_{+0.1}^{+0.3}$	78 .0.030	6.5
14B D A41	115	108.3	120 0	$25_{+0.1}^{+0.3}$	78 .0.030	9.0

Refer to the following section for information on connectors.

♦ SGMCV-□□C

• Flange Specification 1


*1. The shaded section indicates the rotating parts.

*2. The hatched section indicates the non-rotating parts.

Note: Values in parentheses are reference dimensions.

Model SGMCV-	L	(LL)	LB	LH	LA	Approx. Mass [kg]
08C□A11	73	65.3	160 0 -0.040	$40^{+0.3}_{+0.1}$	107 .0.035	9.0
17C□A11	87	79.3	160 0 -0.040	40 +0.3 +0.1	107 .0.035	11.0
25C □ A11	117	109.3	160 0-0.040	40 +0.3 +0.1	107 .0.035	15.0

• Flange Specification 4

*1. The shaded section indicates the rotating parts.

*2. The hatched section indicates the non-rotating parts.

Note: Values in parentheses are reference dimensions.

Model SGMCV-	L	(LL)	LB	LH	LA	Approx. Mass [kg]
08C □ A41	73	65.3	160 0 -0.040	$40^{+0.3}_{+0.1}$	107 0.035	9.0
17C □ A41	87	79.3	160 0 -0.040	40 +0.3 +0.1	107 0.035	11.0
25C □ A41	117	109.3	160 0 -0.040	40 +0.3 +0.1	107 0.035	15.0

Refer to the following section for information on connectors. Connector Specifications (page 120)

Connector Specifications

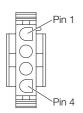
◆ Flange Specification 1

Servomotor Connector Specifications

Model: JN1AS04MK2R Manufacturer: Japan Aviation Electronics Industry, Ltd.

Mating connector: JN1DS04FK1 (Not provided by Yaskawa.)

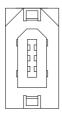
Encoder Connector Specifications



Model: JN1AS10ML1-R Manufacturer: Japan Aviation Electronics Industry, Ltd.

Mating connector: JN1DS10SL1 (Not provided by Yaskawa.)

◆ Flange Specification 4


Servomotor Connector Specifications

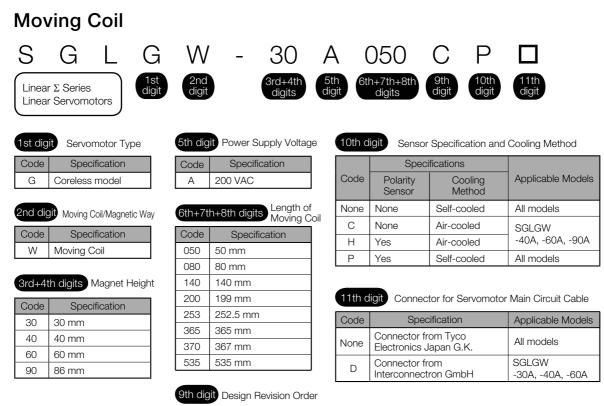
- Model
 - Plug: 350779-1
 - Pins: 350561-3 or 350690-3 (No.1 to 3)
 - Ground pin: 350654-1 or 350669-1 (No. 4) Manufacturer: Tyco Electronics Japan G.K.

Mating Connector

- Cap: 350780-1
- Socket: 350570-3 or 350689-3
- Encoder Connector Specifications

Model: 55102-0600

Manufacturer: Molex Japan Co., Ltd.

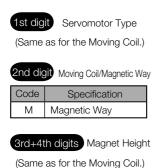

Mating connector: 54280-0609

Linear Servomotors

SGLG (Coreless Models)122
SGLF (Models with F-type Iron Cores)146
SGLT (Models with T-type Iron Cores)189
SGLC (Cylinder Models)213
Specifications When Connecting More Than One Moving Coil

SGLG (Coreless Models)

Model Designations



A, B...

Note: This information is provided to explain model numbers. It is not meant to imply that models are available for all combinations of codes.

Magnetic Way

Code	Specification
090	90 mm
108	108 mm
216	216 mm
225	225 mm
252	252 mm
360	360 mm
405	405 mm
432	432 mm
450	450 mm
504	504 mm

A, B, C*...

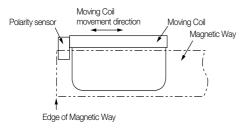
9th digit Options

Code	Specification	Applicable Models
None	Standard-force	All models
-M	High-force	SGLGM-40, -60

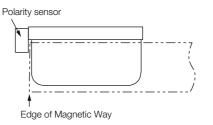
* The SGLGM-40 and SGLGM-60 also have a CT code.

• C = Without mounting holes on the bottom

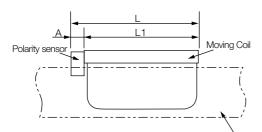
• CT = With mounting holes on the bottom


Note: This information is provided to explain model numbers. It is not meant to imply that models are available for all combinations of codes.

Precautions on Moving Coils with Polarity Sensors


When you use a Moving Coil with a Polarity Sensor, the Magnetic Way must cover the bottom of the polarity sensor. Refer to the example that shows the correct installation. When determining the length of the Moving Coil's stroke or the length of the Magnetic Way, consider the total length (L) of the Moving Coil and the polarity sensor. Refer to the following table.

Correct Installation


Note

Incorrect Installation

Total Length of Moving Coil with Polarity Sensor

Magnetic Way

Moving Coil Model SGLGW-	Length of Moving Coil, L1 [mm]	Length of Polarity Sensor, A [mm]	Total Length, L [mm]
30A050 □ P□	50	0	50
30A080 □ P□	80	(Included in the length of Moving Coil.)	80
40A140□H□ 40A140□P□	140		156
40A253□H□ 40A253□P□	252.5	16	268.5
40A365□H□ 40A365□P□	365		381
60A140□H□ 60A140□P□	140		156
60A253□H□ 60A253□P□	252.5	16	268.5
60A365□H□ 60A365□P□	365		381
90A200□H□ 90A200□P□	199	0	199
90A370□H□ 90A370□P□	367	(Included in the length of	367
90A535□H□ 90A535□P□	535	Moving Coil.)	535

Specifications and Ratings

Specifications: With Standard-Force Magnetic Way

	Servomotor	30	A		40A			60A			90A		
•	Coil Model GLGW-	050C	080C	140C	253C	365C	140C	253C	365C	200C	370C	535C	
Time Rati	ng				•	Cc	ntinuou	S		C 200C 370C 53			
Thermal (Class						В						
Insulation	Resistance	B e 500 VDC, 10 MΩ min. 1,500 VAC for 1 minute Permanent magnet Self-cooled or air-cooled (Only self-cooled models are available for the SGLGW-30A.) IP00 - m- 0°C to 40°C (with no freezing) - 20% to 80% relative humidity (with no condensation) • Must be indoors and free of corrosive and explosive gases. • Must be well-ventilated and free of dust and moisture.											
Withstand	Withstand Voltage		Solution Solution										
Excitation	ı					Perma	nent ma	agnet					
Cooling N	lethod		(Or	1,500 VAC for 1 minute Permanent magnet Self-cooled or air-cooled nly self-cooled models are available for the SGLGW-30A.) IP00 0°C to 40°C (with no freezing) 20% to 80% relative humidity (with no condensation) oors and free of corrosive and explosive gases. Il-ventilated and free of dust and moisture.									
Protective	e Structure						IP00						
	Surround- ing Air Tem- perature												
Environ- mental Condi-	Surround- ing Air Humidity		20% to 80% relative humidity (with no condensation)										
tions	Installation Site	MustMustMust	t be well t facilitat t have a	-ventilat e inspeo n altitud	ted and ction and e of 1,0	free of c	lust and ng. less.		•	C 200C 370C			
Shock Resis-	Impact Accelera- tion Rate					196 m/s ²							
Shock Resis- tanceAccelera- ton Rate196 m/s²Number of Impacts2 times													
Vibra- tion Resis- tance	Vibration Accelera- tion Rate	49 m/s		ibration ·to-back		ce in thr	ee direc	tions, ve	ertical, s	side-to-s	side, an	d	

Ratings: With Standard-Force Magnetic Way

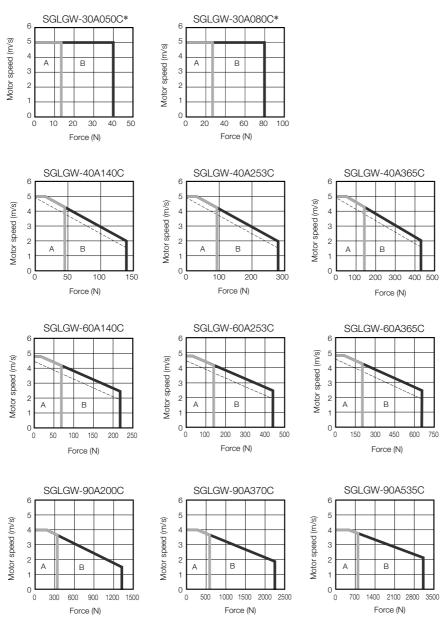
Linear Serve	omotor	30)A		40A			60A		90A			
Moving Coil SGLGV		050C	080C	140C	253C	365C	140C	253C	365C	200C	370C	535C	
Rated Motor Speed (Refer- ence Speed during Speed Control) ^{*1}	m/s	1.5	1.5	2.0	2.0	2.0	2.3	2.3	2.3	1.8	1.5	1.5	
Maximum Speed ^{*1}	m/s	5.0	5.0	5.0	5.0	5.0	4.8	4.8	4.8	4.0	4.0	4.0	
Rated Force ^{*1, *2}	Ν	12.5	25	47	93	140	70	140	210	325	550	750	
Maximum Force ^{*1}	Ν	40	80	140	280	420	220	440	660	1300	2200	3000	
Rated Current*1	Arms	0.51	0.79	0.80	1.6	2.4	1.2	2.2	3.3	4.4	7.5	10.2	
Maximum Current ^{*1}	Arms	1.6	2.5	2.4	4.9	7.3	3.5	7.0	10.5	17.6	30.0	40.8	
Moving Coil Mass	kg	0.10	0.15	0.34	0.60	0.87	0.42	0.76	1.1	2.2	3.6	4.9	
Force Constant	N/Arms	26.4	33.9	61.5	61.5	61.5	66.6	66.6	66.6	78.0	78.0	78.0	
BEMF Constant	Vrms/ (m/s)/ phase	8.80	11.3	20.5	20.5	20.5	22.2	22.2	22.2	26.0	26.0	26.0	
Motor Constant	N/√W	3.66	5.63	7.79	11.0	13.5	11.1	15.7	19.2	26.0	36.8	45.0	
Electrical Time Constant	ms	0.19	0.41	0.43	0.43	0.43	0.45	0.45	0.45	1.4	1.4	1.4	
Mechanical Time Constant	ms	7.5	4.7	5.6	5.0	4.8	3.4	3.1	3.0	3.3	2.7	2.4	
Thermal Resis- tance (with Heat Sink)	K/W	5.19	3.11	1.67	0.87	0.58	1.56	0.77	0.51	0.39	0.26	0.22	
Thermal Resis- tance (without Heat Sink)	K/W	8.13	6.32	3.02	1.80	1.23	2.59	1.48	1.15	1.09	0.63	0.47	
Magnetic Attraction	Ν	0	0	0	0	0	0	0	0	0	0	0	
Combined Magne SGLGM-	etic Way,	30ロ		4			6	60 000 0			90 000 A		
Combined Serial Unit, JZDP-DDD		250	251	252	253	254	258	259	260	264	265	266	
Applicable	SGD7S-	R70A	R90A	R90A	1R6A	2R8A	1R6A	2R8A	5R5A	120A	180A	200A	
SERVOPACKs	SGD7W-	1R6A	1R6A	1R6A	1R6A	2R8A	1R6A	2R8A	5R5A	-	-	-	

*1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. The values for other items are at 20°C. These are typical values.

*2. The rated forces are the continuous allowable force values at a surrounding air temperature of 40°C with an aluminum heat sink of the dimensions given in the following table.

Heat Sink Dimensions

+ 200 mm \times 300 mm \times 12 mm: SGLGW-30A050C, -30A080C, -40A140C, and -60A140C

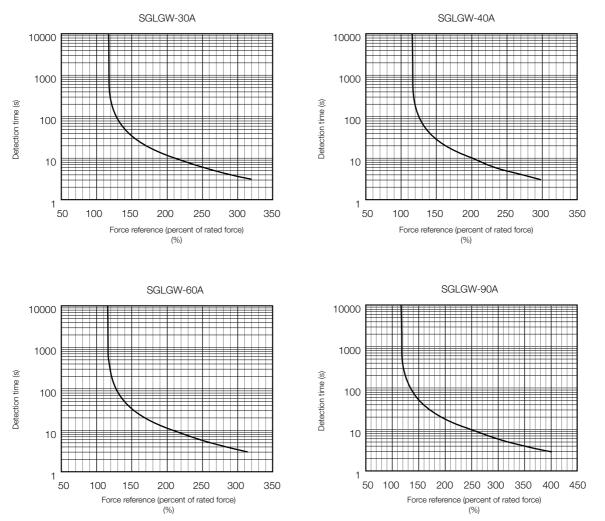

+ 300 mm \times 400 mm \times 12 mm: SGLGW-40A253C and -60A253C

+ 400 mm \times 500 mm \times 12 mm: SGLGW-40A365C and -60A365C

+ 800 mm \times 900 mm \times 12 mm: SGLGW-90A200C, -90A370C, and -90A535C

Force-Motor Speed Characteristics

- A : Continuous duty zone (solid lines): With three-phase 200-V input
- B : Intermittent duty zone ----- (dotted lines): With single-phase 200-V input


* The characteristics are the same for three-phase 200 V and single-phase 200 V.

Note: 1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. These are typical values.

- 2. The characteristics in the intermittent duty zone depend on the power supply voltage.
- 3. If the effective force is within the allowable range for the rated force, the Servomotor can be used within the intermittent duty zone.
- 4. If you use a Servomotor Main Circuit Cable that exceeds 20 m, the intermittent duty zone in the torque-motor speed characteristics will become smaller because the voltage drop increases.

Servomotor Overload Protection Characteristics

The overload detection level is set for hot start conditions with a Servomotor surrounding air temperature of 40°C.

Note: The above overload protection characteristics do not mean that you can perform continuous duty operation with an output of 100% or higher. Use the Servomotor so that the effective force remains within the continuous duty zone given in *Force-Motor Speed Characteristics* on page 126.

Specifications: With High-Force Magnetic Way

Linear Servom	otor Moving Coil Model		40A			60A			
	SGLGW-	140C	253C	365C	140C	253C 253C d d ing) o condens o condens ind explosiv and mois s.	365C		
Time Rating			,	Conti	nuous				
Thermal Class			E	3					
Insulation Resistar	Insulation Resistance			500 VDC, 1	10 M Ω mir	l.			
Withstand Voltage	•	1,500 VAC for 1 minute							
Excitation				Permaner	nt magnet	magnet			
Cooling Method			Se	elf-cooled	or air-cool	ed			
Protective Structu	Protective Structure			IP	00				
	Surrounding Air Temperature	0°C to 40°C (with no freezing)							
	Surrounding Air Humidity	20% to 80% relative humidity (with no condensation)							
Environmental Conditions	Installation Site	 Must be Must fa Must hat 	e indoors a e well-vent cilitate insp ave an altitu e free of stu	ilated and pection and ude of 1,00	free of dus d cleaning 00 m or les	253C 253C d d ing) o condens o condens t and mois s.	•		
Shock	Impact Acceleration Rate			196	m/s²				
Resistance	Number of Impacts			2 tir	nes				
Vibration Resistance	Vibration Acceleration Rate		the vibratic side-to-sid				, vertical,		

Ratings: With High-Force Magnetic Way

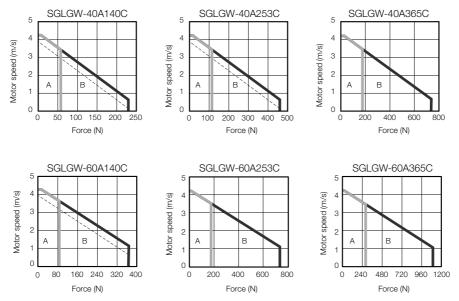
Linear Servomotor Moving C	oil Model		40A		60A			
SGLGW-		140C	253C	365C	140C	253C	365C	
Rated Motor Speed (Reference Speed during Speed Control)*1	m/s	1.0	1.0	1.0	1.0	1.0	1.0	
Maximum Speed ^{*1}	m/s	4.2	4.2	4.2	4.2	4.2	4.2	
Rated Force ^{*1, *2}	Ν	57	114	171	85	170	255	
Maximum Force ^{*1}	Ν	230	460	690	360	720	1080	
Rated Current ^{*1}	Arms	0.80	1.6	2.4	1.2	2.2	3.3	
Maximum Current ^{*1}	Arms	3.2	6.5	9.7	5.0	10.0	14.9	
Moving Coil Mass	kg	0.34	0.60	0.87	0.42	0.76	1.1	
Force Constant	N/Arms	76.0	76.0	76.0	77.4	77.4	77.4	
BEMF Constant	Vrms/(m/s)/ phase	25.3	25.3	25.3	25.8	25.8	25.8	
Motor Constant	N/\sqrt{W}	9.62	13.6	16.7	12.9	18.2	22.3	
Electrical Time Constant	ms	0.43	0.43	0.43	0.45	0.45	0.45	
Mechanical Time Constant	ms	3.7	3.2	3.1	2.5	2.3	2.2	
Thermal Resistance (with Heat Sink)	K/W	1.67	0.87	0.58	1.56	0.77	0.51	
Thermal Resistance (without Heat Sink)	K/W	3.02	1.80	1.23	2.59	1.48	1.15	
Magnetic Attraction	Ν	0	0	0	0	0	0	
Combined Magnetic Way, SGLG	M-	4		М	6		М	
Combined Serial Converter Unit, JZI	DP- 000 -	255	256	257	261	262	263	
Applicable SERVOPACKs	SGD7S-	1R6A	2R8A	3R8A	1R6A	3R8A	7R6A	
	SGD7W-	1R6A	2R8A	5R5A	1R6A	5R5A	7R6A	

*1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. The values for other items are at 20°C. These are typical values.

*2. The rated forces are the continuous allowable force values at a surrounding air temperature of 40°C with an aluminum heat sink of the dimensions given in the following table.

Heat Sink Dimensions

• 200 mm × 300 mm × 12 mm: SGLGW-40A140C and -60A140C

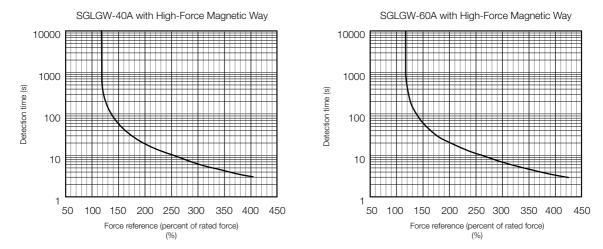

+ 300 mm \times 400 mm \times 12 mm: SGLGW-40A253C and -60A253C

+ 400 mm \times 500 mm \times 12 mm: SGLGW-40A365C and -60A365C

Force-Motor Speed Characteristics

A : Continuous duty zone ——— (solid lines): With three-phase 200-V input

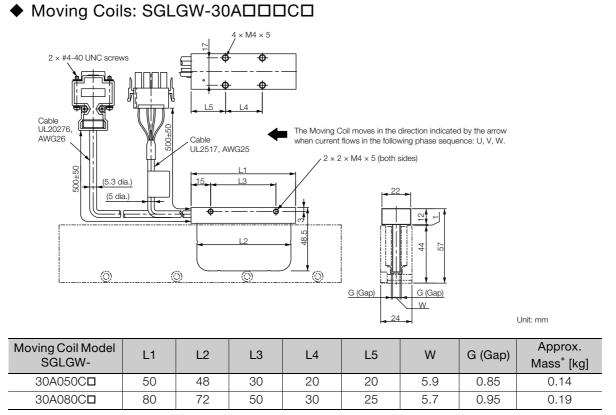
B : Intermittent duty zone ----- (dotted lines): With single-phase 200-V input



Note: 1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. These are typical values.

- 2. The characteristics in the intermittent duty zone depend on the power supply voltage.
- 3. If the effective force is within the allowable range for the rated force, the Servomotor can be used within the intermittent duty zone.
- 4. If you use a Servomotor Main Circuit Cable that exceeds 20 m, the intermittent duty zone in the torque-motor speed characteristics will become smaller because the voltage drop increases.

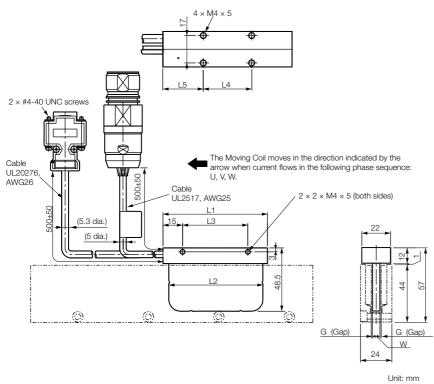
Servomotor Overload Protection Characteristics


The overload detection level is set for hot start conditions with a Servomotor surrounding air temperature of 40°C.

Note: The above overload protection characteristics do not mean that you can perform continuous duty operation with an output of 100% or higher. Use the Servomotor so that the effective force remains within the continuous duty zone given in *Force-Motor Speed Characteristics* on page 129.

External Dimensions

SGLGW-30

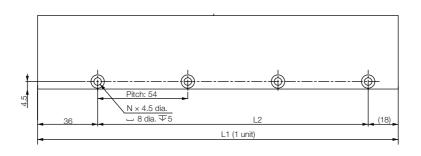


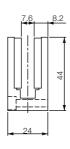
* The mass is for a Moving Coil with a Polarity Sensor.

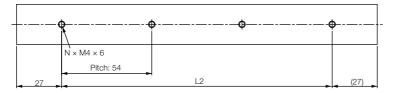
Refer to the following section for the connector specifications for the Sensor Cable and Servomotor Main Circuit Cable.

SGLGW-30A□□□C□ Moving Coils (page 143)

♦ Moving Coils: SGLGW-30A□□□C□D

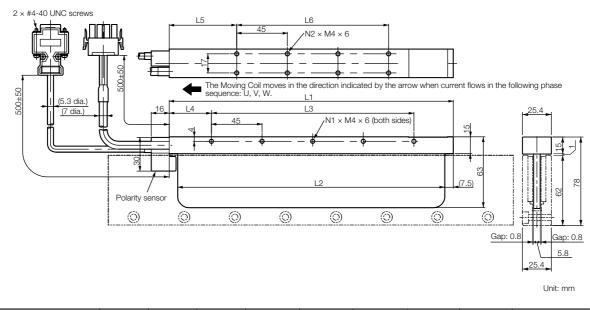

Moving Coil Model SGLGW-	L1	L2	L3	L4	L5	W	G (Gap)	Approx. Mass [*] [kg]
30A050CDD	50	48	30	20	20	5.9	0.85	0.14
30A080C0D	80	72	50	30	25	5.7	0.95	0.19


* The mass is for a Moving Coil with a Polarity Sensor.


Refer to the following section for the connector specifications for the Sensor Cable and Servomotor Main Circuit Cable.

G ◆ SGLGW-30A□□□□C□ Moving Coils (page 143)

◆ Standard-Force Magnetic Ways: SGLGM-30□□□A

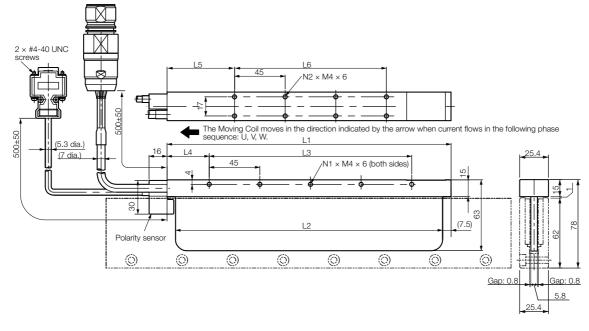


Unit: mm

Magnetic Way Model SGLGM-	L1	L2	Ν	Approx. Mass [kg]
30108A	108 -0.1	54	2	0.6
30216A	216 -0.1	162	4	1.1
30432A	432 -0.1	378	8	2.3

SGLGW-40

◆ Moving Coils: SGLGW-40A□□□C□

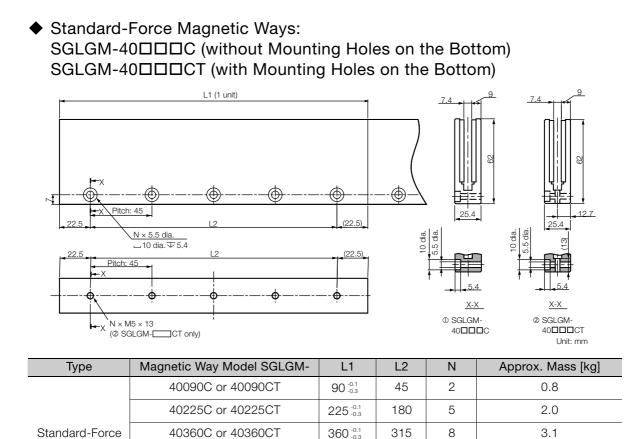

Moving Coil Model SGLGW-	L1	L2	L3	L4	L5	L6	N1	N2	Approx. Mass [*] [kg]
40A140C□	140	125	90	30	52.5	45	3	4	0.40
40A253Cロ	252.5	237.5	180	37.5	60	135	5	8	0.66
40A365Cロ	365	350	315	30	52.5	270	8	14	0.93

* The mass is for a Moving Coil with a Polarity Sensor.

Refer to the following section for the connector specifications for the Sensor Cable and Servomotor Main Circuit Cable.

SGLGW-40A□□□C□ and -60A□□□C□ Moving Coils (page 144)

◆ Moving Coils: SGLGW-40A□□□C□D


Unit: mm

Moving Coil Model SGLGW-	L1	L2	L3	L4	L5	L6	N1	N2	Approx. Mass [*] [kg]
40A140C D	140	125	90	30	52.5	45	3	4	0.40
40A253C D D	252.5	237.5	180	37.5	60	135	5	8	0.66
40A365C D D	365	350	315	30	52.5	270	8	14	0.93

* The mass is for a Moving Coil with a Polarity Sensor.

Refer to the following section for the connector specifications for the Sensor Cable and Servomotor Main Circuit Cable.

SGLGW-40A□□□C□D and -60A□□□C□D Moving Coils (page 144)

 $405 \, {}^{\scriptscriptstyle -0.1}_{\scriptscriptstyle -0.3}$

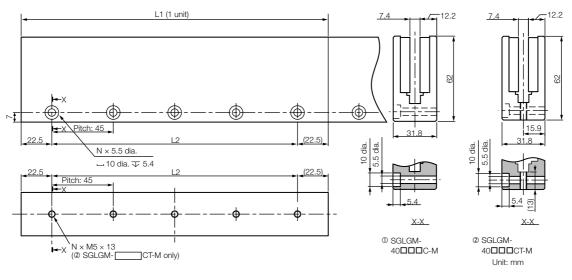
450 -0.1

360

405

9

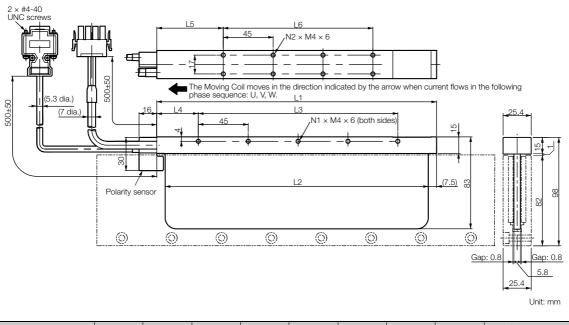
10


3.5

3.9

40405C or 40405CT

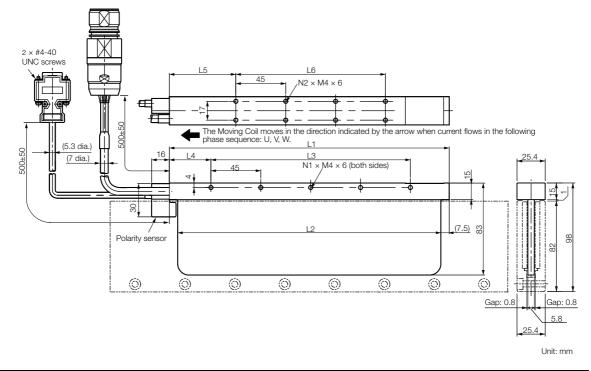
40450C or 40450CT


◆ High-Force Magnetic Ways: SGLGM-40□□□C-M (without Mounting Holes on the Bottom) SGLGM-40□□□CT-M (with Mounting Holes on the Bottom)

Туре	Magnetic Way Model SGLGM-	L1	L2	N	Approx. Mass [kg]
	40090C-M or 40090CT-M	90 -0.1	45	2	1.0
	40225C-M or 40225CT-M	225 -0.1	180	5	2.6
High-Force	40360C-M or 40360CT-M	360 -0.1	315	8	4.1
	40405C-M or 40405CT-M	405 -0.1	360	9	4.6
	40450C-M or 40450CT-M	450 -0.1	405	10	5.1

SGLGW-60

◆ Moving Coils: SGLGW-60A□□□C□

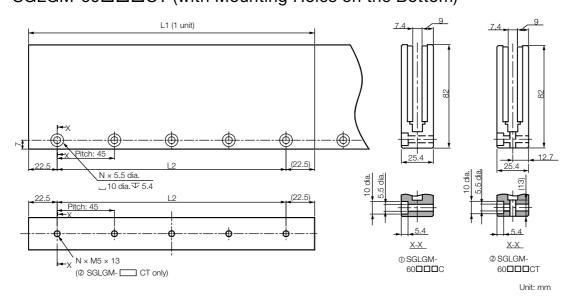

Moving Coil Model SGLGW-	L1	L2	L3	L4	L5	L6	N1	N2	Approx. Mass [*] [kg]
60A140Cロ	140	125	90	30	52.5	45	3	4	0.48
60A253Cロ	252.5	237.5	180	37.5	60	135	5	8	0.82
60A365Cロ	365	350	315	30	52.5	270	8	14	1.16

* The mass is for a Moving Coil with a Polarity Sensor.

Refer to the following section for the connector specifications for the Sensor Cable and Servomotor Main Circuit Cable.

SGLGW-40A□□□C□ and -60A□□□C□ Moving Coils (page 144)

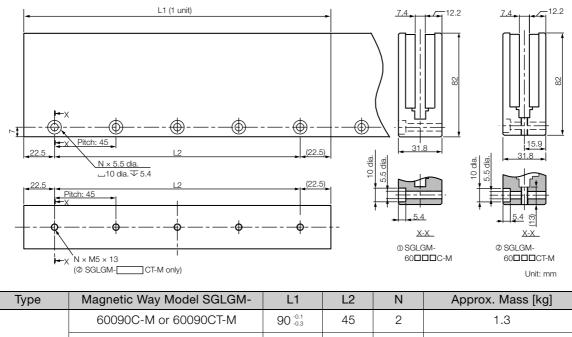
◆ Moving Coils: SGLGW-60A□□□C□D


Moving Coil Model SGLGW-	L1	L2	L3	L4	L5	L6	N1	N2	Approx. Mass [*] [kg]
60A140C□D	140	125	90	30	52.5	45	3	4	0.48
60A253COD	252.5	237.5	180	37.5	60	135	5	8	0.82
60A365COD	365	350	315	30	52.5	270	8	14	1.16

* The mass is for a Moving Coil with a Polarity Sensor.

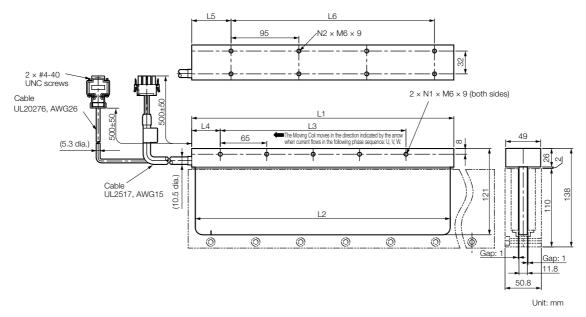
Refer to the following section for the connector specifications for the Sensor Cable and Servomotor Main Circuit Cable.

☞ ◆ SGLGW-40A□□□C□D and -60A□□□C□D Moving Coils (page 144)


Standard-Force Magnetic Ways: SGLGM-60□□□C (without Mounting Holes on the Bottom) SGLGM-60□□□CT (with Mounting Holes on the Bottom)

Туре	Magnetic Way Model SGLGM-	L1	L2	Ν	Approx. Mass [kg]
	60090C or 60090CT	90 -0.1	45	2	1.1
	60225C or 60225CT	225 -0.1	180	5	2.6
Standard-Force	60360C or 60360CT	360 -0.1	315	8	4.1
	60405C or 60405CT	405 -0.1	360	9	4.6
	60450C or 60450CT	450 -0.1	405	10	5.1

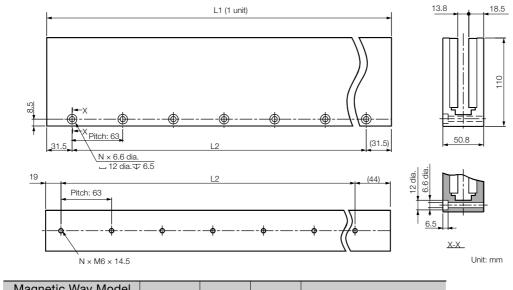
◆ High-Force Magnetic Ways:


SGLGM-60DDDC-M (without Mounting Holes on the Bottom) SGLGM-60DDDCT-M (with Mounting Holes on the Bottom)

	60225C-M or 60225CT-M	225 -0.1	180	5	3.3
High-Force	60360C-M or 60360CT-M	360 -0.1	315	8	5.2
	60405C-M or 60405CT-M	405 -0.1	360	9	5.9
	60450C-M or 60450CT-M	450 -0.1	405	10	6.6

SGLGW-90

◆ Moving Coils: SGLGW-90A□□□C□


Moving Coil Model SGLGW-	L1	L2	L3	L4	L5	L6	N1	N2	Approx. Mass [*] [kg]
90A200Cロ	199	189	130	40	60	95	3	4	2.2
90A370Cロ	367	357	260	40	55	285	5	8	3.65
90A535Cロ	535	525	455	40	60	380	8	10	4.95

* The mass is for a Moving Coil with a Polarity Sensor.

Refer to the following section for the connector specifications for the Sensor Cable and Servomotor Main Circuit Cable.

SGLGW-90A□□□C□ Moving Coils (page 145)

◆ Standard-Force Magnetic Ways: SGLGM-90□□□A

SGLGM-	L1	L2	Ν	Approx. Mass [kg]
90252A	252 -0.1	189	4	7.3
90504A	504 -0.1	441	8	14.7

Connector Specifications

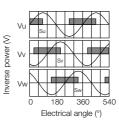
◆ SGLGW-30A□□□C□ Moving Coils

Servomotor Connector

Plug: 350779-1 Pins: 350924-1 or 770672-1 Tyco Electronics Japan G.K.

Mating Connector Cap: 350780-1 Socket: 350925-1 or 770673-1

• Polarity Sensor Connector



Pin connector: 17JE-23090-02 (D8C) From DDK Ltd.

Mating Connector Socket connector: 17JE-13090-02 (D8C) Studs: 17L-002C or 17L-002C1

Polarity Sensor Output Signal

The figure on the right shows the relationship between the Su, Sv, and Sw polarity sensor output signals and the inverse power of each motor phase Vu, Vv, and Vw when the Moving Coil moves in the direction indicated by the arrow in the dimensional drawings of the Moving Coil.

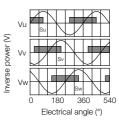
♦ SGLGW-30A□□□C□D Moving Coils

• Servomotor Connector

Extension: SROC06JMSCN169 Pins: 021.423.1020 From Interconnectron GmbH

Mating Connector Plug: SPUC06KFSDN236 Socket: 020.030.1020

Polarity Sensor Connector



Pin connector: 17JE-23090-02 (D8C) From DDK Ltd.

Mating Connector Socket connector: 17JE-13090-02 (D8C) Studs: 17L-002C or 17L-002C1

Polarity Sensor Output Signal

The figure on the right shows the relationship between the Su, Sv, and Sw polarity sensor output signals and the inverse power of each motor phase Vu, Vv, and Vw when the Moving Coil moves in the direction indicated by the arrow in the dimensional drawings of the Moving Coil.

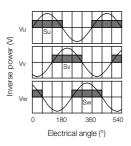
◆ SGLGW-40A□□□C□ and -60A□□□C□ Moving Coils

Servomotor Connector

Plug: 350779-1 Pins: 350561-3 or 350690-3 (No.1 to 3) 350654-1 or 350669-1 (No. 4) Tyco Electronics Japan G.K.

Mating Connector Cap: 350780-1 Socket: 350570-3 or 350689-3

• Polarity Sensor Connector


0[::::]0

Pin connector: 17JE-23090-02 (D8C) From DDK Ltd.

Mating Connector Socket connector: 17JE-13090-02 (D8C) Studs: 17L-002C or 17L-002C1

• Polarity Sensor Output Signal

The figure on the right shows the relationship between the Su, Sv, and Sw polarity sensor output signals and the inverse power of each motor phase Vu, Vv, and Vw when the Moving Coil moves in the direction indicated by the arrow in the dimensional drawings of the Moving Coil.

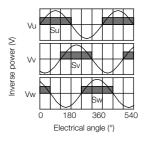
◆ SGLGW-40A□□□C□D and -60A□□□C□D Moving Coils

Servomotor Connector

Extension: SROC06JMSCN169 Pins: 021.423.1020 From Interconnectron GmbH

Mating Connector Plug: SPUC06KFSDN236 Socket: 020.030.1020

Polarity Sensor Connector


o[.....]o

Pin connector: 17JE-23090-02 (D8C) From DDK Ltd.

Mating Connector Socket connector: 17JE-13090-02 (D8C) Studs: 17L-002C or 17L-002C1

• Polarity Sensor Output Signal

The figure on the right shows the relationship between the Su, Sv, and Sw polarity sensor output signals and the inverse power of each motor phase Vu, Vv, and Vw when the Moving Coil moves in the direction indicated by the arrow in the dimensional drawings of the Moving Coil.

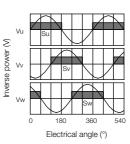
♦ SGLGW-90A□□□C□ Moving Coils

Servomotor Connector

Plug: 350779-1 Pins: 350218-3 or 350547-3 (No.1 to 3) 350654-1 or 350669-1 (No. 4) Tyco Electronics Japan G.K.

Mating Connector Cap: 350780-1 Socket: 350537-3 or 350550-3

• Polarity Sensor Connector

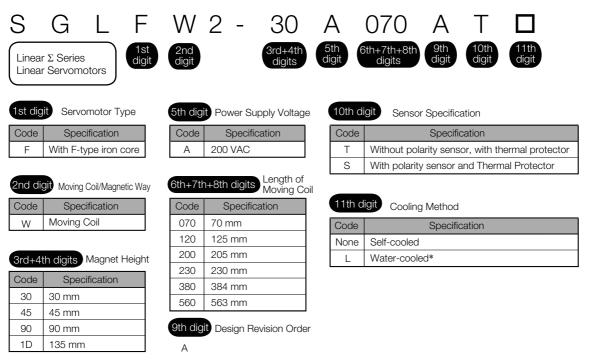


Pin connector: 17JE-23090-02 (D8C) From DDK Ltd.

Mating Connector Socket connector: 17JE-13090-02 (D8C) Stud: 17L-002C or 17L-002C1

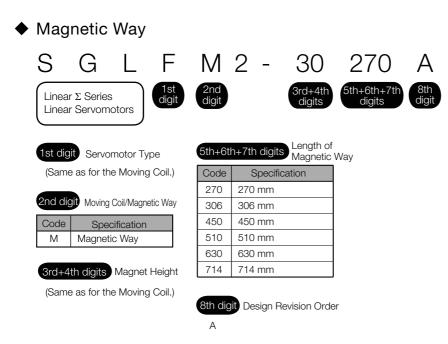
Polarity Sensor Output Signal

The figure on the right shows the relationship between the Su, Sv, and Sw polarity sensor output signals and the inverse power of each motor phase Vu, Vv, and Vw when the Moving Coil moves in the direction indicated by the arrow in the dimensional drawings of the Moving Coil.



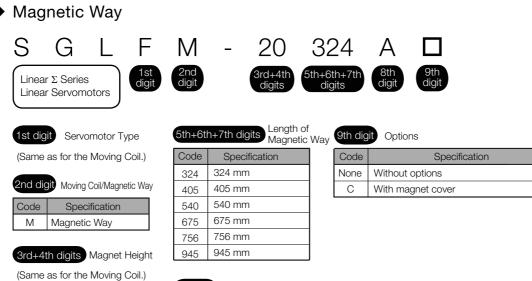
SGLF (Models with F-type Iron Cores)

Model Designations


SGLFW2 Models

Moving Coil

Note: This information is provided to explain model numbers. It is not meant to imply that models are available for all combinations of codes.


* Contact your Yaskawa representative for information on water-cooled models.

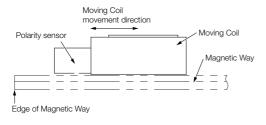
SGLFW Models

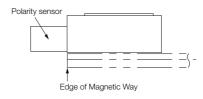
viov	ing Co	oil											
S	G	L	F	W	-	20	А	(090	А	Ρ		
	r Σ Series r Servomot	tors	1st digit	2nd digit)	3rd+4th digits	5th digit	6tł	n+7th+8th digits	9th digit	10th digit	11th digit	
1st dig	jit Servon	notor Ty	pe	5th dig	it Voltage	•		10th c	ligit Sens	sor Specifica	ation		
Code	Specif	ication		Code	Speci	fication	חר	Code		Specifi	cation		
	Mith E tur	be iron c	oro	A	200 VAC		7 F	Р	With polar	ritv sensor			
F	ννιαι σ-ιγμ				200 1/10					.,			
F	ννιαι Ε-ιγμ		016		200 11 10			None	Without p	olarity senso	r		
2nd di	git Moving Co	oil/Magne			1+8th digit	Length of Moving (of Coil	None 11th d		,		r Main C	Sircuit C
	git Moving Co	oil/Magne ication		6th+7th	1+8th digit	Length c	of Coil		igit Conne	olarity senso	romoto	r Main C	
2nd dig Code	git Moving Co	oil/Magne ication		6th+7th Code	n+8th digit Speci	Length of Moving (of Coil	11th d Code	igit Conne	olarity senso	romoto Ap	plicable	
2nd dig Code W	Moving C Specif Moving C	oil/Magne ication oil	tic Way	6th+7th Code 090	1+8th digit Speci 91 mm	Length of Moving (of Coil	11th d	igit Conne Speci Connector	olarity senso	romoto Ar		
2nd dig Code W 3rd+4	git Moving Co Specif Moving C th digits M	oil/Magne ication oil 1agnet F	tic Way	6th+7th Code 090 120	91 mm 127 mm	Length of Moving (of Coil	11th d Code	igit Conne Speci Connector Electronics Connector	ctor for Serv fication from Tyco s Japan G.K.	omoto Ap All r SGI	pplicable nodels _FW-35	Model
2nd dig Code W 3rd+4 Code	git Moving C Specif Moving C th digits M Specif	oil/Magne ication oil 1agnet F	tic Way	6th+7th Code 090 120 200	91 mm 127 mm 215 mm	Length of Moving (of Coil	11th d Code None	igit Conne Speci Connector Electronics Connector	ctor for Serv fication from Tyco s Japan G.K.	omoto Ap All r SGI	oplicable nodels	Model
2nd dig Code W 3rd+4 Code 20	git Moving Co Specif Moving C th digits M Specif 20 mm	oil/Magne ication oil 1agnet F	tic Way	6th+7th 090 120 200 230 380	1+8th digit Speci 91 mm 127 mm 215 mm 235 mm 395 mm	E Length c Moving (of Coil	11th d Code None	igit Conne Speci Connector Electronics Connector	ctor for Serv fication from Tyco s Japan G.K.	omoto Ap All r SGI	pplicable nodels _FW-35	Model
2nd di Code W 3rd+4 Code 20 35	th digits Moving Control of the digits of th	oil/Magne ication oil 1agnet F	tic Way	6th+7th 090 120 200 230 380	1+8th digit Speci 91 mm 127 mm 215 mm 235 mm 395 mm	Length of Moving (of Coil	11th d Code None	igit Conne Speci Connector Electronics Connector	ctor for Serv fication from Tyco s Japan G.K.	omoto Ap All r SGI	pplicable nodels _FW-35	Model
2nd dig Code W 3rd+4 Code 20	git Moving Co Specif Moving C th digits M Specif 20 mm	oil/Magne ication oil 1agnet F	tic Way	6th+7th 090 120 200 230 380	91 mm 127 mm 215 mm 235 mm 395 mm	E Length c Moving (of Coil	11th d Code None	igit Conne Speci Connector Electronics Connector	ctor for Serv fication from Tyco s Japan G.K.	omoto Ap All r SGI	pplicable nodels _FW-35	Model

Note: This information is provided to explain model numbers. It is not meant to imply that models are available for all combinations of codes.

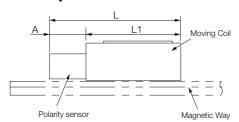
8th digit Design Revision Order

А, В ...


Precautions on Moving Coils with Polarity Sensors


When you use a Moving Coil with a Polarity Sensor, the Magnetic Way must cover the bottom of the polarity sensor. Refer to the example that shows the correct installation. When determining the length of the Moving Coil's stroke or the length of the Magnetic Way, consider the total length (L) of the Moving Coil and the polarity sensor. Refer to the following table.

Correct Installation


Note

Incorrect Installation

Total Length of Moving Coil with _ Polarity Sensor

Moving Coil Model SGLFW2-	Length of Moving Coil, L1 [mm]	Length of Polarity Sensor, A [mm]	Total Length, L [mm]	
30A070AS	70		97	
30A120AS	125	29	152	
30A230AS	230		257	
45A200AS	205	34	237	
45A380AS	384	54	416	
90A200AS	205		237	
90A380AS	384	34	416	
90A560AS	563		595	
1DA380AS	384	32	416	
1DA560AS	563	02	595	
Moving Coil Model SGLFW-	Length of Moving Coil, L1 [mm]	Length of Polarity Sensor, A [mm]	Total Length, L [mm]	
Model	Moving Coil,	Polarity Sensor, A [mm]	Length,	
Model SGLFW-	Moving Coil, L1 [mm]	Polarity Sensor,	Length, L [mm]	
Model SGLFW- 20A090AP	Moving Coil, L1 [mm] 91	Polarity Sensor, A [mm] 22	Length, L [mm] 113	
Model SGLFW- 20A090AP 20A120AP	Moving Coil, L1 [mm] 91 127	Polarity Sensor, A [mm]	Length, L [mm] 113 149	
Model SGLFW- 20A090AP 20A120AP 35A120AP□	Moving Coil, L1 [mm] 91 127 127	Polarity Sensor, A [mm] 22 22	Length, L [mm] 113 149 149	
Model SGLFW- 20A090AP 20A120AP 35A120AP□ 35A230AP□	Moving Coil, L1 [mm] 91 127 127 235	Polarity Sensor, A [mm] 22	Length, L [mm] 113 149 149 257	
Model SGLFW- 20A090AP 20A120AP 35A120AP□ 35A230AP□ 50A200BP□	Moving Coil, L1 [mm] 91 127 127 235 215	Polarity Sensor, A [mm] 22 22	Length, L [mm] 113 149 149 257 237	

Specifications and Ratings: SGLFW2 Models

Specifications

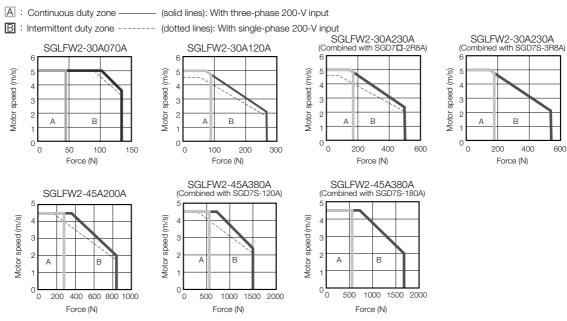
Linear Servomotor Moving Coil		30A		45A		90A		1DA			
M	odel SGLFW2-	070AD	120A□	230Aロ	200Aロ	380A🗆	200A	380A□	560Aロ	380A□	560Aロ
Time Rati	ng	Continuous									
Thermal (Class	В									
Insulation	Resistance	500 VDC, 10 MΩ min.									
Withstand	d Voltage	1,500 VAC for 1 minute									
Excitation)	Permanent magnet									
Cooling N	lethod				Self-co	oled and	d water-	cooled*			
Protective	e Structure					IP	00				
	Surrounding Air Tem- perature		0°C to 40°C (with no freezing)								
Environ- mental	Surrounding Air Humidity	20% to 80% relative humidity (with no condensation)									
Condi- tions	Installation Site	 Must be indoors and free of corrosive and explosive gases. Must be well-ventilated and free of dust and moisture. Must facilitate inspection and cleaning. Must have an altitude of 1,000 m or less. Must be free of strong magnetic fields. 									
Shock	Impact Acceleration Rate	196 m/s ²									
Resis- tance	Number of Impacts	2 times									
Vibra- tion Resis- tance	Vibration Accelera- tion Rate	49 m/s ² (the vibration resistance in three directions, vertical, side-to-side, and front-to-back)							-side,		

* Contact your Yaskawa representative for information on water-cooled models.

Ratings

Linear Servomotor Moving Coil			30	DA	45A			
Model SGLFW2-		070Aロ	120Aロ	230	DAD	200A□ 380A□)A🗆
Rated Motor Speed (Ref- erence Speed during Speed Control) ^{*1}	m/s	4.0	4.0	4.0		4.0	4.0	
Maximum Speed ^{*1}	m/s	5.0	5.0	5.0		4.5	4.5	
Rated Force*1,*2	Ν	45	90	180 170		280	560	
Maximum Force ^{*1}	Ν	135	270	540	500	840	1680	1500
Rated Current ^{*1}	Arms	1.4	1.5	2.9	2.8	4.4	8.7	
Maximum Current*1	Arms	5.3	5.2	10.5	9.3	16.4	32.7	27.5
Moving Coil Mass	kg	0.50	0.90	1	.7	2.9	5.5	
Force Constant	N/Arms	33.3	64.5	64	1.5	67.5	67.5	
BEMF Constant	Vrms/ (m/s)/ phase	11.1	21.5	21.5		22.5	22.5	
Motor Constant	N/\sqrt{W}	11.3	17.3	24.4		36.9	52.2	
Electrical Time Constant	ms	7.6	7.3	7	.3	19	19	
Mechanical Time Con- stant	ms	3.9	3.0	2	.9	2.1	2	.0
Thermal Resistance (with Heat Sink)	K/W	2.62	1.17	0.	79	0.60	0.	44
Thermal Resistance (without Heat Sink)	K/W	11.3	4.43	2.55		2.64	1.49	
Magnetic Attraction	Ν	200	630	1260		2120	4240	
Combined Magnetic Way, SGLFM2-		3000A				45 000 A		
Combined Serial Converte	er Unit,	628	629	630 631		6	632	
Applicable SGD7S-		1R6A	1R6A	3R8A	2R8A	5R5A	180A	120A
SERVOPACKs SGD7W-		1R6A	1R6A	_	2R8A	5R5A	_	_

*1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. The values for other items are at 20°C. These are typical values.


*2. The rated forces are the continuous allowable force values at a surrounding air temperature of 40°C with an aluminum heat sink of the dimensions given in the following table.

• Heat Sink Dimensions

• 150 mm × 100 mm × 10 mm: SGLFW2-30A070A

+ 254 mm \times 254 mm \times 25 mm: SGLFW2-30A120A and -30A230A + 400 mm \times 500 mm \times 10 mm: SGLFW2-45A200A and -45A380A

Force-Motor Speed Characteristics

- Note: 1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. These are typical values.
 - 2. The characteristics in the intermittent duty zone depend on the power supply voltage.
 - 3. If the effective force is within the allowable range for the rated force, the Servomotor can be used within the intermittent duty zone.
 - 4. If you use a Servomotor Main Circuit Cable that exceeds 20 m, the intermittent duty zone in the torque-motor speed characteristics will become smaller because the voltage drop increases.

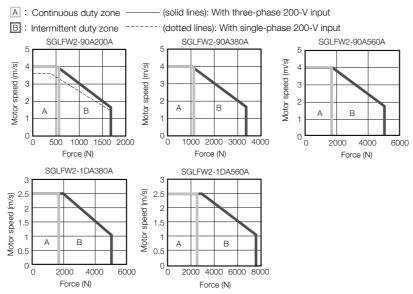
Ratings

Linear Servomotor Moving Coil			90A	1DA			
Model SGLFW2-	_	200Aロ	380Aロ	560Aロ	380Aロ	560Aロ	
Rated Motor Speed (Ref- erence Speed during Speed Control) ^{*1}	m/s	4.0	4.0	4.0	2.0	2.0	
Maximum Speed ^{*1}	m/s	4.0	4.0	4.0	2.5	2.5	
Rated Force ^{*1, *2}	Ν	560	1120	1680	1680	2520	
Maximum Force ^{*1}	Ν	1680	3360	5040	5040	7560	
Rated Current ^{*1}	Arms	7.2	14.4	21.6	14.4	21.6	
Maximum Current*1	Arms	26.9	53.9	80.8	53.9	80.8	
Moving Coil Mass	kg	5.3	10.1	14.9	14.6	21.5	
Force Constant	N/Arms	82.0	82.0	82.0	123	123	
BEMF Constant	Vrms/ (m/s)/ phase	27.3	27.3	27.3	41.0	41.0	
Motor Constant	N/ _v /W	58.1	82.2	101	105	129	
Electrical Time Constant	ms	24	23	24	25	25	
Mechanical Time Constant	ms	1.6	1.5	1.5	1.3	1.3	
Thermal Resistance (with Heat Sink)	K/W	0.45	0.21	0.18	0.18	0.12	
Thermal Resistance (with- out Heat Sink)	K/W	1.81	1.03	0.72	0.79	0.55	
Magnetic Attraction	Ν	4240	8480	12700	12700	19100	
Combined Magnetic Way, SGLFM2-		90 □ □□A			1D □ □ □ A		
Combined Serial Converte	r Unit,	633	634	648	649	650	
Applicable SGD7S-		120A	200A	330A	200A	330A	
SERVOPACKs SGD7W-		-	-	-	-	-	

*1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. The values for other items are at 20°C. These are typical values.

*2. The rated forces are the continuous allowable force values at a surrounding air temperature of 40°C with an aluminum heat sink of the dimensions given in the following table.

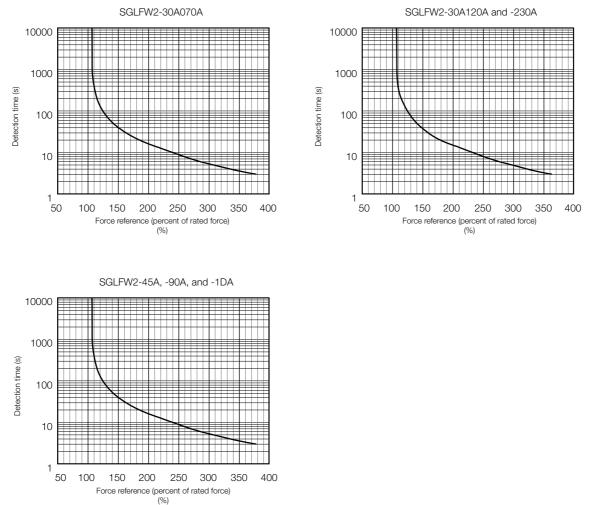
Heat Sink Dimensions


• 400 mm × 500 mm × 10 mm: SGLFW2-90A200A

• 609 mm × 762 mm × 10 mm: SGLFW2-90A380A

+ 900 mm \times 762 mm \times 10 mm: SGLFW2-90A560A and -1DA380A

• 1,200 mm × 762 mm × 10 mm: SGLFW2-1DA560A


Force-Motor Speed Characteristics

- Note: 1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. These are typical values.
 - 2. The characteristics in the intermittent duty zone depend on the power supply voltage.
 - 3. If the effective force is within the allowable range for the rated force, the Servomotor can be used within the intermittent duty zone.
 - 4. If you use a Servomotor Main Circuit Cable that exceeds 20 m, the intermittent duty zone in the torque-motor speed characteristics will become smaller because the voltage drop increases.

Servomotor Overload Protection Characteristics

The overload detection level is set for hot start conditions with a Servomotor surrounding air temperature of 40°C.

Note: The above overload protection characteristics do not mean that you can perform continuous duty operation with an output of 100% or higher. Use the Servomotor so that the effective force remains within the continuous duty zone given in *Force-Motor Speed Characteristics* on page 151 and on page 153.

Specifications and Ratings: SGLFW Models

Specifications

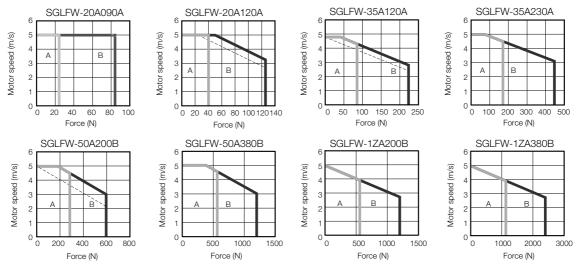
Linear Ser	vomotor Moving Coil Model	20)A	35	5A	50)A	12	ZA
	SGLFW-	090A	120A	120A	230A	200B	380B	200B	380B
Time Rating					Conti	nuous			
Thermal Class	3	В							
Insulation Res	istance			500	OVDC, ⁻	10 MΩ r	nin.		
Withstand Vol	tage			1,50	DAV 00	for 1 mi	nute		
Excitation				Р	ermanei	nt magn	et		
Cooling Metho				Self-c	cooled				
Protective Str	IP00								
	Surrounding Air Temperature	0°C to 40°C (with no freezing)							
	Surrounding Air Humidity	20% to 80% relative humidity (with no condensation)							
Environmen- tal Condi- tions	Installation Site	 Must be indoors and free of corrosive and explosive gase Must be well-ventilated and free of dust and moisture. Must facilitate inspection and cleaning. Must have an altitude of 1,000 m or less. Must be free of strong magnetic fields. 				•			
Shock	Impact Acceleration Rate	196 m/s ²							
Resistance Number of Impacts			2 times						
Vibration Resistance	Vibration Acceleration Rate	49 m/s			resistan and fror			tions, ve	ertical,

Ratings

Linear Serve	omotor Moving	Coil Model	20	A	3	5A	50	DA	12	ZA
	SGLFW-		090A	120A	120A	230A	200B	380B	200B	380B
Rated Motor Sp (Reference Spe Speed Control)	ed during	m/s	5.0	3.5	2.5	3.0	1.5	1.5	1.5	1.5
Maximum Spee	ed ^{*1}	m/s	5.0	5.0	5.0	5.0	5.0	5.0	4.9	4.9
Rated Force*1,*	*2	N	25	40	80	160	280	560	560	1120
Maximum Force	e*1	N	86	125	220	440	600	1200	1200	2400
Rated Current*	1	Arms	0.70	0.80	1.4	2.8	5.0	10.0	8.7	17.5
Maximum Curre	ent ^{*1}	Arms	3.0	2.9	4.4	8.8	12.4	25.0	21.6	43.6
Moving Coil Ma	ISS	kg	0.70	0.90	1.3	2.3	3.5	6.9	6.4	12
Force Constant	t	N/Arms	36.0	54.0	62.4	62.4	60.2	60.2	69.0	69.0
BEMF Constan	t	Vrms/(m/s)/ phase	12.0	18.0	20.8	20.8	20.1	20.1	23.0	23.0
Motor Constan	t	N/ _√ W	7.95	9.81	14.4	20.4	34.3	48.5	52.4	74.0
Electrical Time	Constant	ms	3.2	3.3	3.6	3.6	16	16	18	18
Mechanical Tim	ne Constant	ms	11	9.4	6.3	5.5	3.0	2.9	2.3	2.1
Thermal Resista (with Heat Sink)		K/W	4.35	3.19	1.57	0.96	0.56	0.38	0.47	0.20
Thermal Resista (without Heat S		K/W	7.69	5.02	4.10	1.94	1.65	0.95	1.30	0.73
Magnetic Attrac	Magnetic Attraction N		310	460	810	1590	1650	3260	3300	6520
Combined Magnetic Way, SGLFM-		2000		3500		5000		1ZDC		
Combined Seria		it,	017	018	019	020	181	182	183	184
Applicable	SGD7S-		1R6A	1R6A	1R6A	3R8A	5R5A	120A	120A	200A
SERVOPACKs	SGD7W-		1R6A	1R6A	1R6A	5R5A	5R5A	-	_	_

*1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. The values for other items are at 20°C. These are typical values.

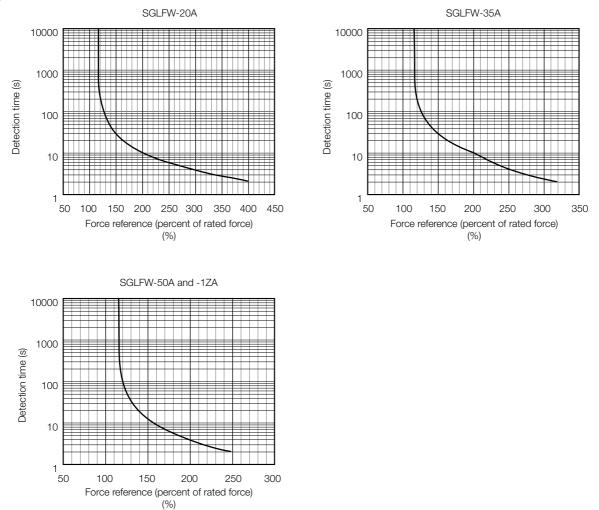
*2. The rated forces are the continuous allowable force values at a surrounding air temperature of 40°C with an aluminum heat sink of the dimensions given in the following table.


Heat Sink Dimensions

- + 125 mm \times 125 mm \times 13 mm: SGLFW-20A090A and -20A120A
- + 254 mm \times 254 mm \times 25 mm: SGLFW-35A120A and -35A230A
- + 400 mm \times 500 mm \times 40 mm: SGLFW-50A200B, 50A380B, and -1ZA200B
- 600 mm × 762 mm × 50 mm: SGLFW-1ZA380B

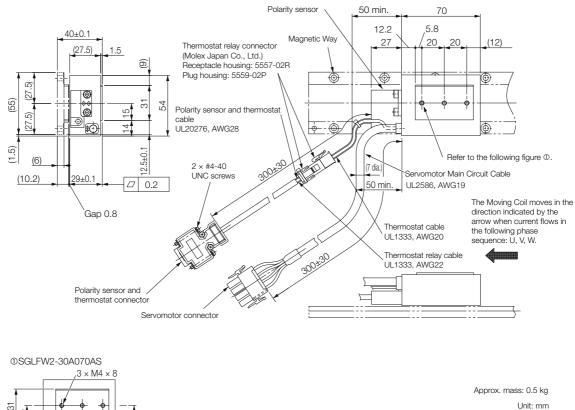
Force-Motor Speed Characteristics

A : Continuous duty zone — (solid lines): With three-phase 200-V input


B : Intermittent duty zone ----- (dotted lines): With single-phase 200-V input

- Note: 1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. These are typical values.
 - 2. The characteristics in the intermittent duty zone depend on the power supply voltage.
 - 3. If the effective force is within the allowable range for the rated force, the Servomotor can be used within the intermittent duty zone.
 - 4. If you use a Servomotor Main Circuit Cable that exceeds 20 m, the intermittent duty zone in the torque-motor speed characteristics will become smaller because the voltage drop increases.

Servomotor Overload Protection Characteristics


The overload detection level is set for hot start conditions with a Servomotor surrounding air temperature of 40°C.

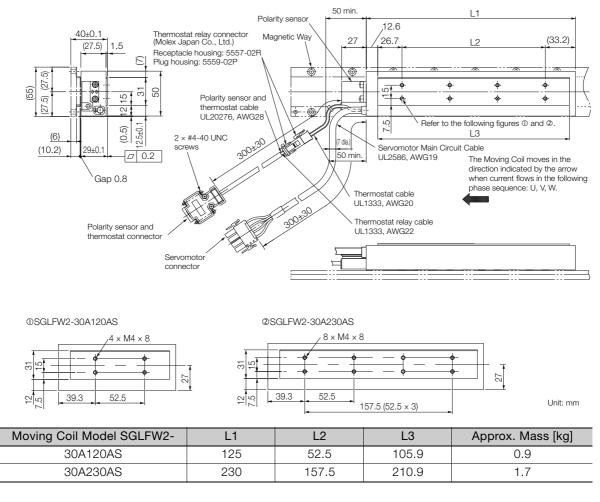
Note: The above overload protection characteristics do not mean that you can perform continuous duty operation with an output of 100% or higher. Use the Servomotor so that the effective force remains within the continuous duty zone given in *Force-Motor Speed Characteristics* on page 157.

External Dimensions

SGLFW2-30

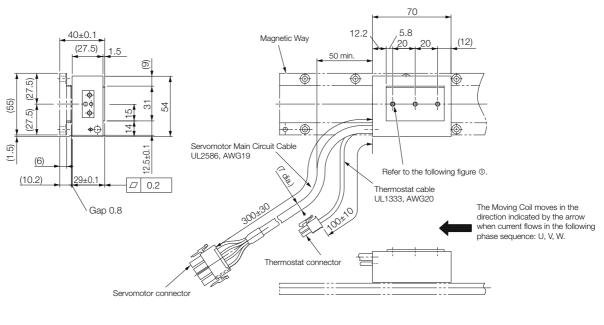
Moving Coil with Polarity Sensor: SGLFW2-30A070AS

Refer to the following section for the connector specifications for the Sensor Cable and Servomotor Main Circuit Cable.


■ Moving Coils with Polarity Sensors: SGLFW2-30 and -45 (page 184)

50

18 20

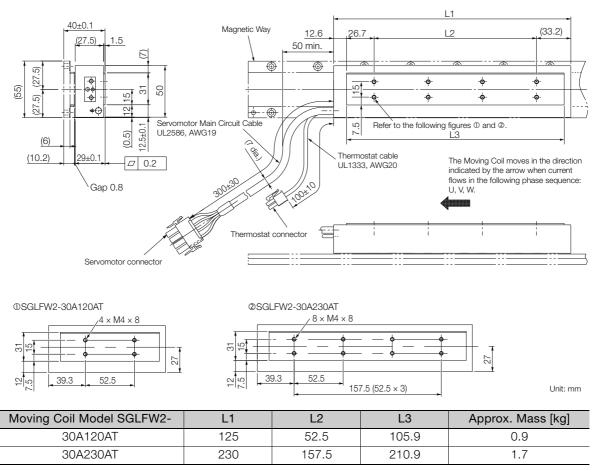

40

7

◆ Moving Coils with Polarity Sensors: SGLFW2-30A□□□AS

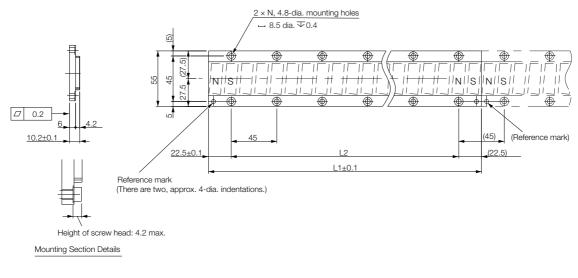
Refer to the following section for the connector specifications for the Sensor Cable and Servomotor Main Circuit Cable.

Moving Coil without Polarity Sensor: SGLFW2-30A070AT


@SGLFW2-30A070AT

Refer to the following section for the connector specifications for the Sensor Cable and Servomotor Main Circuit Cable.

■ Moving Coils without Polarity Sensors: SGLFW2-30 and -45 (page 185)


◆ Moving Coils without Polarity Sensors: SGLFW2-30A□□□AT

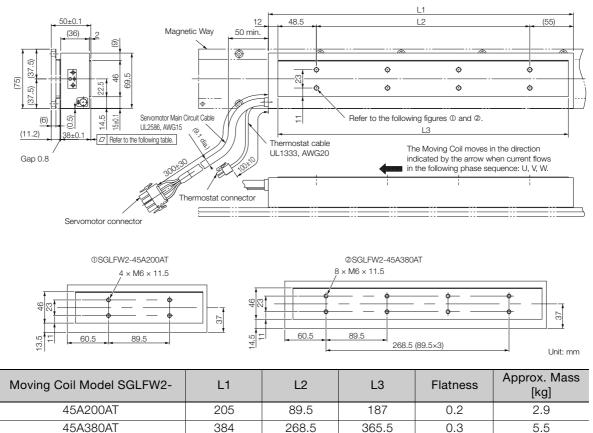
Refer to the following section for the connector specifications for the Sensor Cable and Servomotor Main Circuit Cable.

₩ Moving Coils without Polarity Sensors: SGLFW2-30 and -45 (page 185)

◆ Magnetic Ways: SGLFM2-30□□□A

Unit: mm

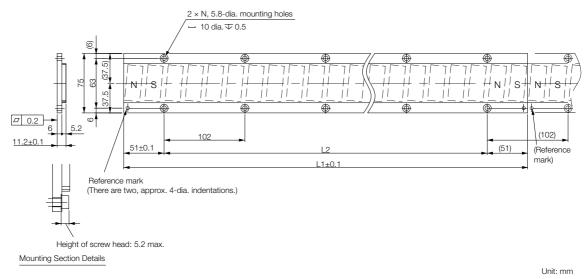
Note: More than one Magnetic Way can be connected. Connect the Magnetic Ways so that the reference marks on them are aligned in the same direction as shown in the figure.


Magnetic Way Model SGLFM2-	L1 ± 0.1	L2	N	Approx. Mass [kg]
30270A	270	225 (45 × 5)	6	0.9
30450A	450	405 (45 × 9)	10	1.5
30630A	630	585 (45 × 13)	14	2.0

SGLFW2-45

◆ Moving Coils with Polarity Sensors: SGLFW2-45A□□□AS

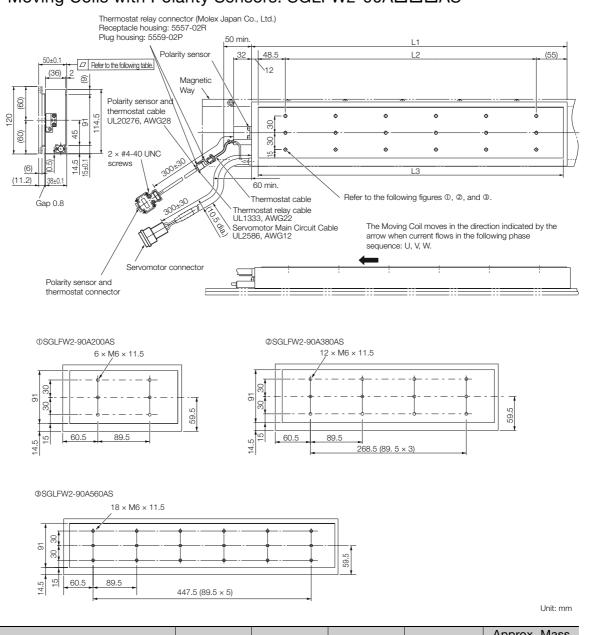
Refer to the following section for the connector specifications for the Sensor Cable and Servomotor Main Circuit Cable.



◆ Moving Coils without Polarity Sensors: SGLFW2-45A□□□AT

Refer to the following section for the connector specifications for the Sensor Cable and Servomotor Main Circuit Cable.

Moving Coils without Polarity Sensors: SGLFW2-30 and -45 (page 185)


◆ Magnetic Ways: SGLFM2-45□□□A

Note: More than one Magnetic Way can be connected. Connect the Magnetic Ways so that the reference marks on them are aligned in the same direction as shown in the figure.

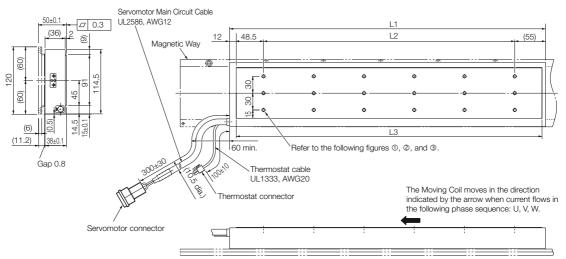
Magnetic Way Model SGLFM2-	L1 ± 0.1	L2	N	Approx. Mass [kg]
45306A	306	204 (102 × 2)	3	1.5
45510A	510	408 (102 × 4)	5	2.5
45714A	714	612 (102 × 6)	7	3.4

SGLFW2-90

	Movina	Coils with	Polarity	Sensors:	SGLFW2-90ADDDAS
•	TWIC VILLO		i i Olality	00110010.	

90A200AS 205 89.5 187 0.2 90A380AS 384 268.5 365.5 0.3	Moving Coil Model SGLFW2-	L1	L2	L3	Flatness	[kg]
90A380AS 384 268.5 365.5 0.3	90A200AS	205	89.5	187	0.2	5.3
	90A380AS	384	268.5	365.5	0.3	10.1
90A560AS 563 447.5 544 0.3	90A560AS	563	447.5	544	0.3	14.9

Refer to the following section for the connector specifications for the Sensor Cable and Servomotor Main Circuit Cable.


■ Moving Coils with Polarity Sensors: SGLFW2-90 and -1D (page 185)

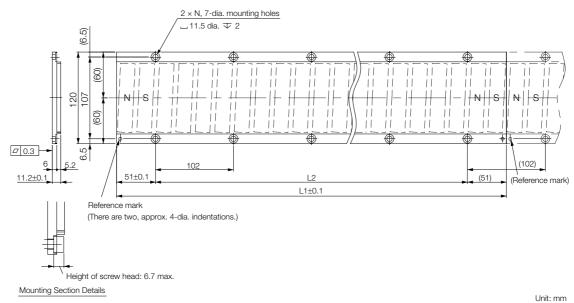
60.5

14.5

89.5

♦ Moving Coils without Polarity Sensors: SGLFW2-90A□□□AT

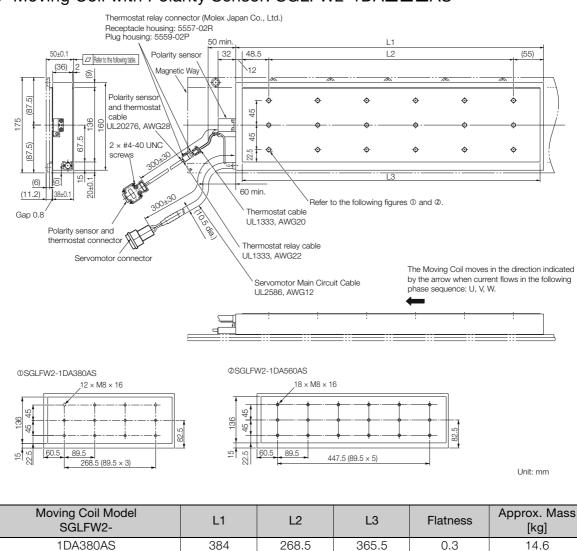
Unit: mm


Moving Coil Model SGLFW2-	L1	L2	L3	Flatness	Approx. Mass [kg]
90A200AT	205	89.5	187	0.2	5.3
90A380AT	384	268.5	365.5	0.3	10.1
90A560AT	563	447.5	544	0.3	14.9

59.5

Refer to the following section for the connector specifications for the Sensor Cable and Servomotor Main Circuit Cable.

447.5 (89.5 × 5)


◆ Magnetic Ways: SGLFM2-90□□□A

Note: More than one Magnetic Way can be connected. Connect the Magnetic Ways so that the reference marks on them are aligned in the same direction as shown in the figure.

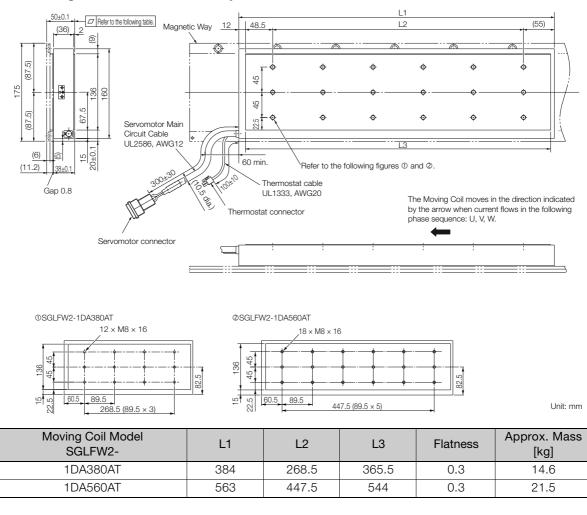
Magnetic Way Model SGLFM2-	L1±0.1	L2	Ν	Approx. Mass [kg]
90306A	306	204 (102 × 2)	3	2.6
90510A	510	408 (102 × 4)	5	4.2
90714A	714	612 (102 × 6)	7	5.9

SGLFW2-1D

◆ Moving Coil with Polarity Sensor: SGLFW2-1DA□□□AS

Refer to the following section for the connector specifications for the Sensor Cable and Servomotor Main Circuit Cable.

447.5

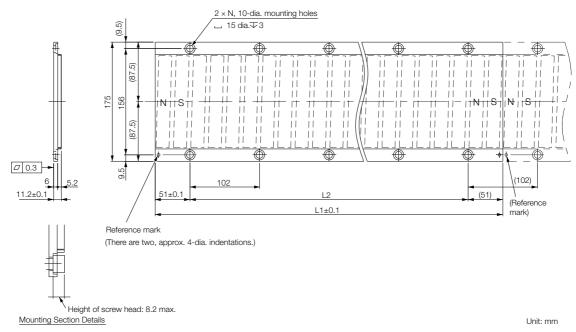

544

0.3

21.5

563

1DA560AS

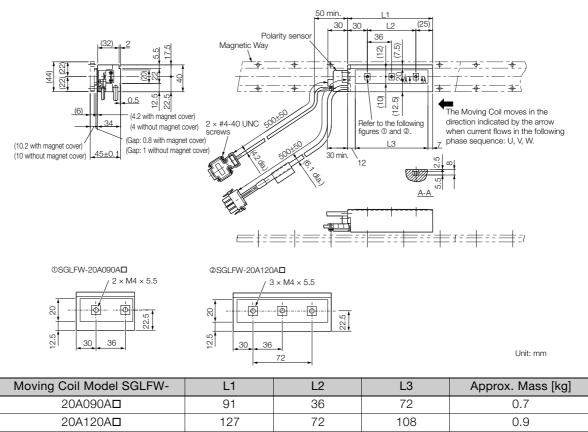


◆ Moving Coil without Polarity Sensor: SGLFW2-1DA□□□AT

Refer to the following section for the connector specifications for the Sensor Cable and Servomotor Main Circuit Cable.

■ Moving Coils without Polarity Sensors: SGLFW2-90 and -1D (page 186)

◆ Magnetic Ways: SGLFM2-1D□□□A

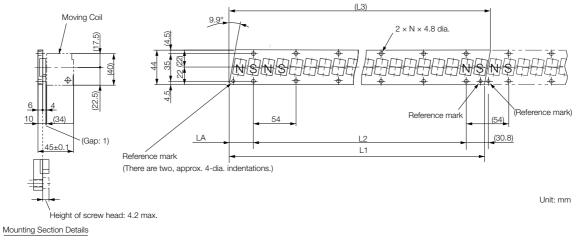


Note: More than one Magnetic Way can be connected. Connect the Magnetic Ways so that the reference marks on them are aligned in the same direction as shown in the figure.

Magnetic Way Model SGLFM2-	L1±0.1	L2	N	Approx. Mass [kg]
1D306A	306	204 (102 × 2)	3	3.7
1D510A	510	408 (102 × 4)	5	6.2
1D714A	714	612 (102 × 6)	7	8.6

SGLFW-20

♦ Moving Coils: SGLFW-20A□□□A□

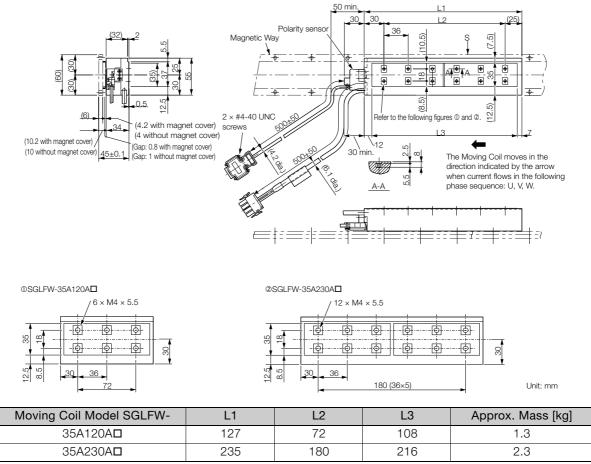


Note: The above dimensional drawing gives the dimensions for both models with polarity sensors and models without polarity sensors.

Refer to the following section for the connector specifications for the Sensor Cable and Servomotor Main Circuit Cable.

SGLFW-20A□□□A□ and -35A□□□□A□ Moving Coils (page 186)

◆ Magnetic Ways: SGLFM-20□□□A



Note: More than one Magnetic Way can be connected. Connect the Magnetic Ways so that the reference marks on them are aligned in the same direction as shown in the figure.

Magnetic Way Model SGLFM-	L1	L2	(L3)	LA	N	Approx. Mass [kg]
20324A	324 -0.1	270 (54 × 5)	(331.6)	30.8 -0.2	6	0.9
20540A	540 -0.1	486 (54 × 9)	(547.6)	30.8 .0.2	10	1.4
20756A	756 -0.1	702 (54 × 13)	(763.6)	30.8 .0.2	14	2

SGLFW-35

♦ Moving Coils: SGLFW-35A□□□A□

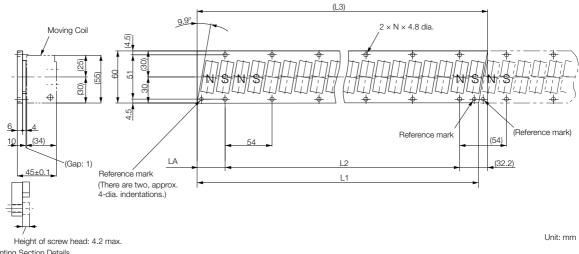
Note: The above dimensional drawing gives the dimensions for both models with polarity sensors and models without polarity sensors.

Refer to the following section for the connector specifications for the Sensor Cable and Servomotor Main Circuit Cable.

SGLFW-20A□□□A□ and -35A□□□A□ Moving Coils (page 186)

◆ Moving Coils: SGLFW-35A□□□A□D 50 min. 30 12 Polarity senso 36 (32) (10.5)Magnetic Way ŝ ¢ (09) ŝ (8.5) ú (12. (6) Refer to the following figures 0 and 0. (4.2 with magnet cover) 2 × #4-40 UNC .34 13 (4 without magnet cover) screws -(Gap: 0.8 with magnet cover) 12 (10 without magnet cover) 2.5 The Moving Coil moves in the direction indicated by the arrow when current flows in 30 min (Gap: 1 without magnet cover) VA the following phase sequence: U, V, W. A-A ©SGLFW-35A120A□D ©SGLFW-35A230A□D $6 \times M4 \times 5.5$ $12 \times M4 \times 5.5$ -@--@ -@--@-Ð þ 8 Ъ -कि 8 30 2.5 2.5 8.5 36 36 180 <u>(</u>36×5)

Moving Coil Model SGLFW-	L1	L2	L3	Approx. Mass [kg]
35A120ADD	127	72	108	1.3
35A230A□D	235	180	216	2.3

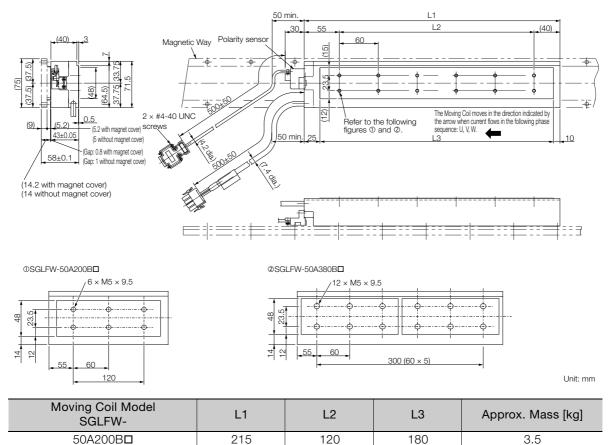

Unit: mm

Note: The above dimensional drawing gives the dimensions for both models with polarity sensors and models without polarity sensors.

Refer to the following section for the connector specifications for the Sensor Cable and Servomotor Main Circuit Cable.

SGLFW-35A□□□A□D and -50A□□□B□D Moving Coils (page 187)

◆ Magnetic Ways: SGLFM-35□□□A


Mounting Section Details

Note: More than one Magnetic Way can be connected. Connect the Magnetic Ways so that the reference marks on them are aligned in the same direction as shown in the figure.

Magnetic Way Model SGLFM-	L1	L2	(L3)	LA	N	Approx. Mass [kg]
35324A	324 -0.1	270 (54 × 5)	(334.4)	32.2 .0.2	6	1.2
35540A	540 -0.1	486 (54 × 9)	(550.4)	32.2 .0.2	10	2
35756A	756 -0.1	702 (54 × 13)	(766.4)	32.2 ⁰ -0.2	14	2.9

SGLFW-50

◆ Moving Coils: SGLFW-50A□□□B□

Note: The above dimensional drawing g	ives the dimensior	ns for both models	with polarity senso	rs and models with-
out polarity sensors.				

395

Refer to the following section for the connector specifications for the Sensor Cable and Servomotor Main Circuit Cable.

300

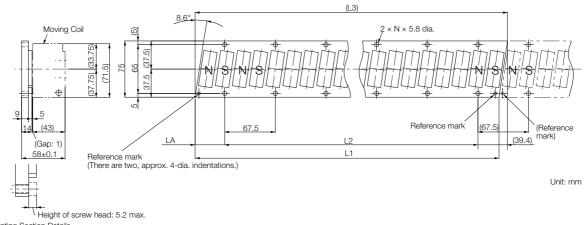
360

6.9

SGLFW-50A□□□B□ Moving Coils (page 187)

50A380Bロ

50 min 55 30 40 12 Polarity (40) Magnetic Way 60 15) 23 ¢ 2 × #4-40 UNC screw 12 The Moving Coil moves in the direction 0.5 (9) Refer to the following figures ① and ②. (5.2 with magnet cover) indicated by the arrow when current flows 43 50 mir n the following phase sequence: U, V, W. 10 (5 without magnet cover) (Gap: 0.8 with magnet cover) (Gap: 1 without magnet cover) (14.2 with magnet cover) (14 without magnet cover) Σ f ∃∃ ©SGLFW-50A200B□D ©SGLFW-50A380B□D /6 × M5 × 9.5 $12 \times M5 \times 9.5$ ¢ 9 23. 8 Á Ġ. ሐ 4 4 4 12 55 60 300 (60 × 5) 60 120 Unit: mm Moving Coil Model L1 L2 L3 Approx. Mass [kg] SGLFW-50A200BDD 215 120 180 3.5 50A380B**D**D 395 300 360 6.9


♦ Moving Coils: SGLFW-50A□□□B□D

Note: The above dimensional drawing gives the dimensions for both models with polarity sensors and models without polarity sensors.

Refer to the following section for the connector specifications for the Sensor Cable and Servomotor Main Circuit Cable.

SGLFW-35A□□□A□D and -50A□□□B□D Moving Coils (page 187)

◆ Magnetic Ways: SGLFM-50□□□A

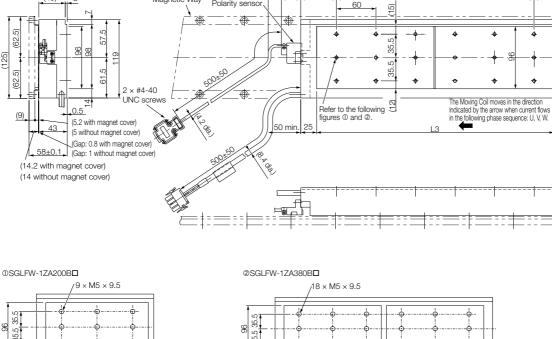
Mounting Section Details

Note: More than one Magnetic Way can be connected. Connect the Magnetic Ways so that the reference marks on them are aligned in the same direction as shown in the figure.

Magnetic Way Model SGLFM-	L1	L2	(L3)	LA	N	Approx. Mass [kg]
50405A	405 -0.1	337.5 (67.5 × 5)	(416.3)	39.4 0.2	6	2.8
50675A	675 -0.1	607.5 (67.5 × 9)	(686.3)	39.4 0.2	10	4.6
50945A	945 -0.1	877.5 (67.5 × 13)	(956.3)	39.4 0.2	14	6.5

40

۲

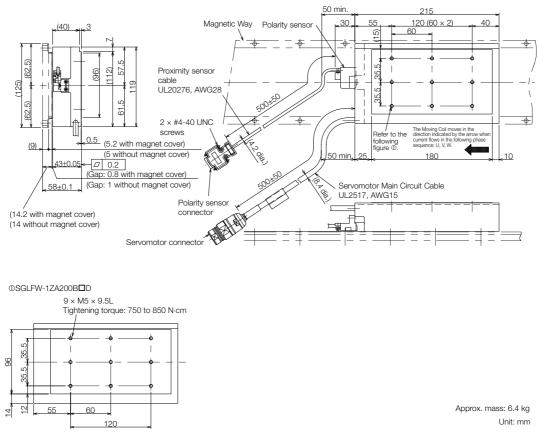

۲

10

Ξ

SGLFW-1Z

◆ Moving Coils: SGLFW-1ZA□□□B□ 50 mir 30 55 (40 Magnetic Way Polarity sensor 60 (15) 1 ۲ (62. 35.5 (125) 35.5 (62.5) 51.0 500? --ф 2 × #4-40 ¢

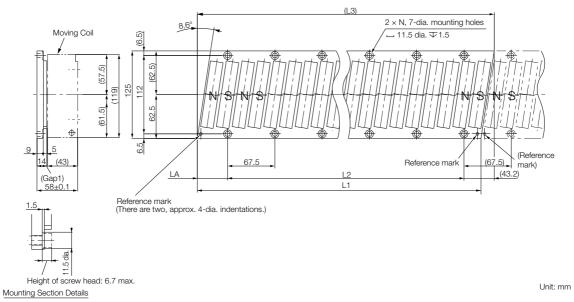

	14			
120		4	300 (60 × 5)	Unit: mm
Moving Coil Model SGLFW-	L1	L2	L3	Approx. Mass [kg]
1ZA200Bロ	215	120	180	6.4
1ZA380Bロ	395	300	360	11.5

Note: The above dimensional drawing gives the dimensions for both models with polarity sensors and models without polarity sensors.

Refer to the following section for the connector specifications for the Sensor Cable and Servomotor Main Circuit Cable.

Image: SGLFW-1ZA□□□B□ Moving Coils (page 188)

◆ Moving Coils: SGLFW-1ZA200B□D



Note: The above dimensional drawing gives the dimensions for both models with polarity sensors and models without polarity sensors.

Refer to the following section for the connector specifications for the Sensor Cable and Servomotor Main Circuit Cable.

G ◆ SGLFW-1ZA200B D Moving Coils (page 188)

◆ Magnetic Ways: SGLFM-1Z□□□A

Note: More than one Magnetic Way can be connected. Connect the Magnetic Ways so that the reference marks on them are aligned in the same direction as shown in the figure.

Magnetic Way Model SGLFM-	L1	L2	(L3)	LA	Ν	Approx. Mass [kg]
1Z405A	405 -0.3	337.5 (67.5 × 5)	(423.9)	43.2 ⁰ _{-0.2}	6	5
1Z675A	675 -0.1	607.5 (67.5 × 9)	(693.9)	43.2 ⁰ -0.2	10	8.3
1Z945A	945 -0.3	877.5 (67.5 × 13)	(963.9)	43.2 + 0.2	14	12

Connector Specifications

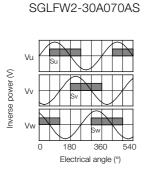
♦ Moving Coils with Polarity Sensors: SGLFW2-30 and -45

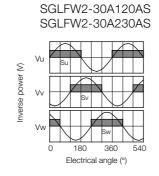
Servomotor Connector

Plug: 350779-1 Pins: 350218-3 or 350547-3 (No.1 to 3) 350654-1 or 350669-1 (No. 4) Tyco Electronics Japan G.K.

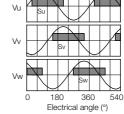
Mating Connector Cap: 350780-1 Socket: 350536-3 or 350550-3

• Polarity Sensor and Thermostat Connector




Pin connector: 17JE-23090-02 (D8C) -CG From DDK Ltd.

Mating Connector Socket connector: 17JE-13090-02 (D8C) A-CG Studs: 17L-002C or 17L-002C1


• Polarity Sensor Output Signal

The following figures show the relationship between the Su, Sv, and Sw polarity sensor output signals and the inverse power of each motor phase Vu, Vv, and Vw when the Moving Coil moves in the direction indicated by the arrow in the dimensional drawings of the Moving Coil.

Inverse power (V)

♦ Moving Coils without Polarity Sensors: SGLFW2-30 and -45

Servomotor Connector

Plug: 350779-1 Pins: 350218-3 or 350547-3 (No.1 to 3) 350654-1 or 350669-1 (No. 4) Tyco Electronics Japan G.K.

Mating Connector Cap: 350780-1 Socket: 350536-3 or 350550-3

Thermostat Connector

Receptacle housing: 5557-02R Terminals: 5556T or 5556TL From Molex Japan Co., Ltd.

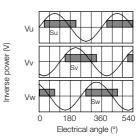
Mating Connector Plug housing: 5559-02P Terminals: 5558T or 5558TL

Moving Coils with Polarity Sensors: SGLFW2-90 and -1D

Servomotor Connector

Tab housing: 1-917808-2 Contacts: 917803-2 (A1, A2, and B1) 84695-1 (B2) Tyco Electronics Japan G.K.

Mating Connector Receptacle housing: 1-917807-2 Contacts: 179956-2


• Polarity Sensor and Thermostat Connector

Pin connector: 17JE-23090-02 (D8C) -CG From DDK Ltd.

Mating Connector Socket connector: 17JE-13090-02 (D8C) A-CG Studs: 17L-002C or 17L-002C1

• Polarity Sensor Output Signal

Moving Coils without Polarity Sensors: SGLFW2-90 and -1D

Servomotor Connector

Tab housing: 1-917808-2 Contacts: 917803-2 (A1, A2, and B1) 84695-1 (B2) Tyco Electronics Japan G.K.

Mating Connector Receptacle housing: 1-917807-2 Contacts: 179956-2

• Thermostat Connector

Receptacle housing: 5557-02R Terminals: 5556T or 5556TL From Molex Japan Co., Ltd.

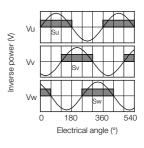
Mating Connector Plug housing: 5559-02P Terminals: 5558T or 5558TL

♦ SGLFW-20A□□□A□ and -35A□□□A□ Moving Coils

Servomotor Connector

Plug: 350779-1 Pins: 350218-3 or 350547-3 (No.1 to 3) 350654-1 or 350669-1 (No. 4) Tyco Electronics Japan G.K.

Mating Connector Cap: 350780-1 Socket: 350536-3 or 350550-3


• Polarity Sensor Connector

Pin connector: 17JE-23090-02 (D8C) From DDK Ltd.

Mating Connector Socket connector: 17JE-13090-02 (D8C) Studs: 17L-002C or 17L-002C1

• Polarity Sensor Output Signal

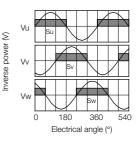
♦ SGLFW-35A□□□A□D and -50A□□□B□D Moving Coils

Servomotor Connector

Extension: ARRA06AMRPN182 Pins: 021.279.1020 From Interconnectron GmbH

Mating Connector Plug: APRA06BFRDN170 Socket: 020.105.1020

• Polarity Sensor Connector



Pin connector: 17JE-23090-02 (D8C) From DDK Ltd.

Mating Connector Socket connector: 17JE-13090-02 (D8C) Studs: 17L-002C or 17L-002C1

• Polarity Sensor Output Signal

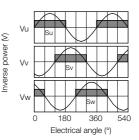
The figure on the right shows the relationship between the Su, Sv, and Sw polarity sensor output signals and the inverse power of each motor phase Vu, Vv, and Vw when the Moving Coil moves in the direction indicated by the arrow in the dimensional drawings of the Moving Coil.

◆ SGLFW-50A□□□B□ Moving Coils

Servomotor Connector

Plug: 350779-1 Pins: 350218-3 or 350547-3 (No.1 to 3) 350654-1 or 350669-1 (No. 4) Tyco Electronics Japan G.K.

Mating Connector Cap: 350780-1 Socket: 350537-3 or 350550-3


• Polarity Sensor Connector

Pin connector: 17JE-23090-02 (D8C) From DDK Ltd.

Mating Connector Socket connector: 17JE-13090-02 (D8C) Studs: 17L-002C or 17L-002C1

• Polarity Sensor Output Signal

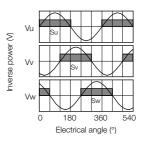
♦ SGLFW-1ZA□□□B□ Moving Coils

Servomotor Connector

Plug: 350779-1 Pins: 350218-3 or 350547-3 (No.1 to 3) 350654-1 or 350669-1 (No. 4) Tyco Electronics Japan G.K.

Mating Connector Cap: 350780-1 Socket: 350537-3 or 350550-3

• Polarity Sensor Connector



Pin connector: 17JE-23090-02 (D8C) From DDK Ltd.

Mating Connector Socket connector: 17JE-13090-02 (D8C) Studs: 17L-002C or 17L-002C1

• Polarity Sensor Output Signal

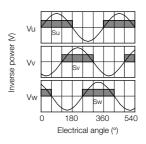
The figure on the right shows the relationship between the Su, Sv, and Sw polarity sensor output signals and the inverse power of each motor phase Vu, Vv, and Vw when the Moving Coil moves in the direction indicated by the arrow in the dimensional drawings of the Moving Coil.

◆ SGLFW-1ZA200B□D Moving Coils

Servomotor Connector

Extension: SROC06JMSCN169 Pins: 021.423.1020 From Interconnectron GmbH

Mating Connector Plug: SPUC06KFSDN236 Socket: 020.030.1020


• Polarity Sensor Connector

Pin connector: 17JE-23090-02 (D8C) From DDK Ltd.

Mating Connector Socket connector: 17JE-13090-02 (D8C) Studs: 17L-002C or 17L-002C1

• Polarity Sensor Output Signal

SGLT (Models with T-type Iron Cores)

Model Designations

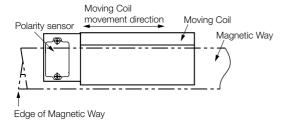
Mov	ing Coil										
S	GL	Т	W	_	20	А		170	AF	D	
	r Σ Series r Servomotors	l st ligit	2nd digit		3rd+4th digits	5th dig	it 6tl	n+7th+8th digits	9th digit d	Oth igit	11th digit
1st dig	t Servomotor Type		5th dig	t Power Su	pply Voltage	(10th di	igit Sensor	Specification	and C	Cooling Method
Code	Specification		Code	Specific	ation			Spe	ecifications		
Т	With T-type iron core		А	200 VAC			Code	Polarity Sensor	Cooling M	ethod	Applicable Models
2nd dig	it Moving Coil/Magnetic	May	6th 17t	h+8th digits	Length of		None	None	Self-cooled	k	All models
		vvay I	=		Nioving OC	pil	C*	None	Water-coo	led	SGLTW-40, -80
Code	Specification		Code	Specific	ation		H*	Yes	Water-coo	led	SGL1W-40, -80
W	Moving Coil		170	170 mm			Р	Yes	Self-cooled	k	All models
			320	315 mm							
3rd+4	th digits Magnet Height		400	394.2 mm		(11th di	ait Connec	tor for Servo	motor	Main Circuit Cable
Code	Specification	1	460	460 mm		1	_				
20	20 mm	1	600	574.2 mm			Code	Specif			oplicable Models
35	36 mm							Connector f	,	SGLI	$W-20A \square \square \square \square$, -35A □ □ □ □ □
40	40 mm		9th dig	it Design Re	evision Order			MS connec		0017	
50	51 mm		А, В.				None	IVIS CONNEC	lor	SGLI	W-40A DDD B D , -80A DDD B D
80	76.5 mm		H: Hıç	gh-efficiency	model			Loose lead		SGLT	W-35ADDHD, -50ADDHD

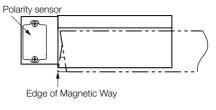
* Contact your Yaskawa representative for the characteristics, dimensions, and other details on Servomotors with these specifications.

Note: This information is provided to explain model numbers. It is not meant to imply that models are available for all combinations of codes.

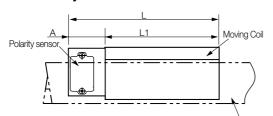
Magnetic Way

* The SGLTM-35DDDH (high-efficiency models) do not support this specification.


Note: This information is provided to explain model numbers. It is not meant to imply that models are available for all combinations of codes.


Precautions on Moving Coils with Polarity Sensors

When you use a Moving Coil with a Polarity Sensor, the Magnetic Way must cover the bottom of the polarity sensor. Refer to the example that shows the correct installation. When determining the length of the Moving Coil's stroke or the length of the Magnetic Way, con-Note sider the total length of the Moving Coil and the polarity sensor. Refer to the following table.


Correct Installation

Total Length of Moving Coil with **Polarity Sensor**

Magnetic Way

Moving Coil Model SGLTW-	Length of Moving Coil, L1 [mm]	Length of Polarity Sensor, A [mm]	Total Length, L [mm]
20A170AP	170		204
20A320AP	315	34	349
20A460AP	460		494
35A170AP	170		204
35A320AP	315	34	349
35A460AP	460		494
35A170HPD	170	34	204
35A320HP	315	- 54	349
50A170HP	170	34	204
50A320HP	315	04	349
40A400BH D 40A400BP D	394.2	26	420.2
40A600BH □ 40A600BP □	574.2	26	600.2
80A400BH D 80A400BP D	394.2	26	420.2
80A600BH □ 80A600BP □	574.2	26	600.2

Specifications and Ratings

Specifications

	Servomotor				Sta	andaro	d Mod	els				Н	-	ficienc dels	;y
	g Coil Model GLTW-		20A			35A		40)A	80)A	35	5A	50)A
Ũ	0.2.1.1	170A	320A	460A	170A	320A	460A	400B	600B	400B	600B	170H	320H	170H	320H
Time Ra	ting							Conti	nuous						
Thermal	Class		В												
Insulatio	n Resistance						500	/DC, ⁻	10 MΩ	min.					
Withstar	id Voltage						1,500	VAC	for 1 n	ninute					
Excitatio	n						Per	maner	nt mag	net					
Cooling	Method							Self-c	ooled						
Protectiv	e Structure							IP	00						
	Surrounding Air Tempera- ture		0°C to 40°C (with no freezing)												
Envi- ron- mental	Surrounding Air Humidity		20% to 80% relative humidity (with no condensation)												
Condi- tions	Installation Site	 Mu Mu Mu 	st be v st faci st hav	well-ve litate i e an a	s and entilate nspec ltitude strone	ed and tion ar of 1,0	l free d nd clea 200 m	of dust aning. or les:	and n			5.			
Shock Resis-	Impact Accelera- tion Rate							196	m/s²						
tance Number of 2 times															
Vibra- tion Vibration Resis- tance Vibration							ont-to-	back)							

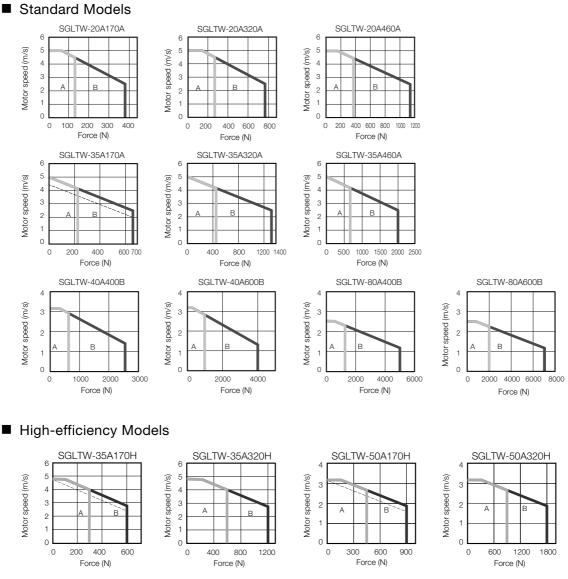
Ratings

Linear Servom	otor Mov-				Sta	andaro	d Mod	lels				Н	-	ficien dels	су
ing Coil Mode	I SGLTW-		20A			35A		40	A)A		5A		A
		170A	320A	460A	170A	320A	460A	400B	600B	400B	600B	170H	320H	170H	320H
Rated Motor Spe (Reference Spee Speed Control) ^{*1}		3.0	3.0	3.0	2.5	2.5	2.5	1.5	2.0	2.0	2.0	2.5	2.0	2.0	2.0
Maximum Speed ^{*1}	m/s	5.0	5.0	5.0	5.0	5.0	5.0	3.1	3.1	2.5	2.5	4.8	4.8	3.2	3.1
Rated Force*1,*2	Ν	130	250	380	220	440	670	670	1000	1300	2000	300	600	450	900
Maximum Force ^{*1}	Ν	380	760	1140	660	1320	2000	2600	4000	5000	7500	600	1200	900	1800
Rated Current ^{*1}	Arms	2.3	4.4	6.7	3.5	7.0	10.7	7.3	10.9	11.1	17.1	5.1	10.1	5.1	10.2
Maximum Current ^{*1}	Arms	7.7	15.4	23.2	12.1	24.2	36.7	39.4	60.6	57.9	86.9	11.9	23.9	11.8	23.6
Moving Coil Mass	kg	2.5	4.6	6.7	3.7	6.8	10	15	23	24	35	4.9	8.8	6.0	11
Force Constant	N/Arms	61.0	61.0	61.0	67.5	67.5	67.5	99.1	99.1	126	126	64.0	64.0	95.2	95.2
BEMF Constant	Vrms/ (m/s)/ phase	20.3	20.3	20.3	22.5	22.5	22.5	33.0	33.0	42.0	42.0	21.3	21.3	31.7	31.7
Motor Constant	N/√W	18.7	26.5	32.3	26.7	37.5	46.4	61.4	75.2	94.7	116	37.4	52.9	48.6	68.7
Electrical Time Constant	ms	5.9	5.9	5.9	6.9	6.8	6.9	15	15	17	17	15	16	16	17
Mechanical Time Constant	ms	7.1	6.6	6.4	5.2	4.8	4.6	4.0	4.1	2.7	2.6	3.5	3.1	2.5	2.4
Thermal Resistance (with Heat Sink)	K/W	1.01	0.49	0.38	0.76	0.44	0.32	0.24	0.20	0.22	0.18	0.76	0.40	0.61	0.30
Thermal Resistance (without Heat Sink)	K/W	1.82	1.11	0.74	1.26	0.95	0.61	0.57	0.40	0.47	0.33	1.26	0.83	0.97	0.80
Magnetic Attraction ^{*3}	Ν	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Magnetic Attraction on One Side ^{*4}	N	800	1590	2380	1400	2780	4170	3950	5890	7650	11400	1400	2780	2000	3980
Combined Magne SGLTM-	Combined Magnetic Way,				3	5 000 A		4000		8000		3500	םאםנ	5000	סאסנ
Combined Serial (Unit, JZDP-		011	012	013	014	015	016	185	186	187	188	105	106	108	109
Applicable	SGD7S-	3R8A	7R6A	120A	5R5A	120A	180A	180A	330A	330A	550A	5R5A	120A	5R5A	120A
SERVOPACKs	SGD7W-	5R5A	7R6A	-	5R5A	_	-	-	-	-	-	5R5A	-	5R5A	-

*1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. The values for other items are at 20°C. These are typical values.

*2. The rated forces are the continuous allowable force values at a surrounding air temperature of 40°C with an aluminum heat sink of the dimensions given in the following table.

• Heat Sink Dimensions


- 254 mm × 254 mm × 25 mm: SGLTW-20A170A and -35A170A
- + 400 mm \times 500 mm \times 40 mm: SGLTW-20A320A, -20A460A, -35A170H, -35A320A, -35A320H, -35A460A, and -50A170H
- + 609 mm \times 762 mm \times 50 mm: SGLTW-40A400B, -40A600B, -50A320H, -80A400B, and -80A600B
- *3. The unbalanced magnetic gap that results from the Moving Coil installation condition causes a magnetic attraction on the Moving Coil.

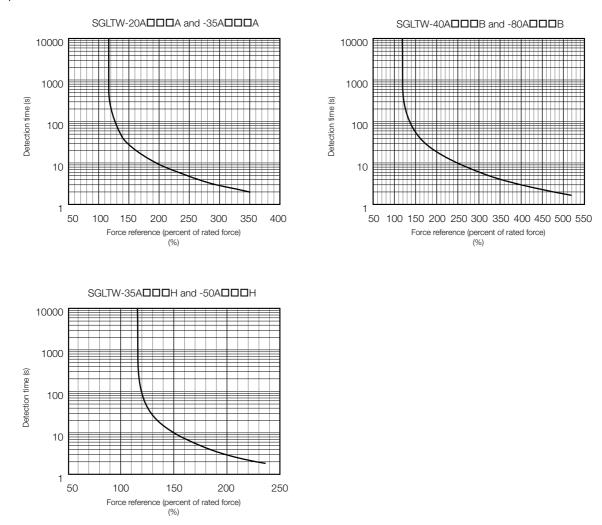
*4. The value that is given is the magnetic attraction that is generated on one side of the Magnetic Way.

Force-Motor Speed Characteristics

A : Continuous duty zone — (solid lines): With three-phase 200-V input

B : Intermittent duty zone ----- (dotted lines): With single-phase 200-V input

Note: 1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. These are typical values.

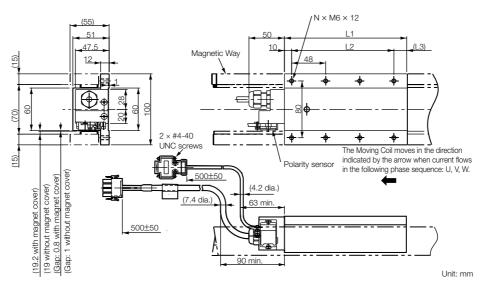

2. The characteristics in the intermittent duty zone depend on the power supply voltage.

3. If the effective force is within the allowable range for the rated force, the Servomotor can be used within the intermittent duty zone.

4. If you use a Servomotor Main Circuit Cable that exceeds 20 m, the intermittent duty zone in the torque-motor speed characteristics will become smaller because the voltage drop increases.

Servomotor Overload Protection Characteristics

The overload detection level is set for hot start conditions with a Servomotor surrounding air temperature of 40°C.



Note: The above overload protection characteristics do mean that you can perform continuous duty operation with an output of 100% or higher. Use the Servomotor so that the effective force remains within the continuous duty zone given in *Force-Motor Speed Characteristics* on page 193.

External Dimensions

SGLTW-20: Standard Models

♦ Moving Coils: SGLTW-20A□□□A□

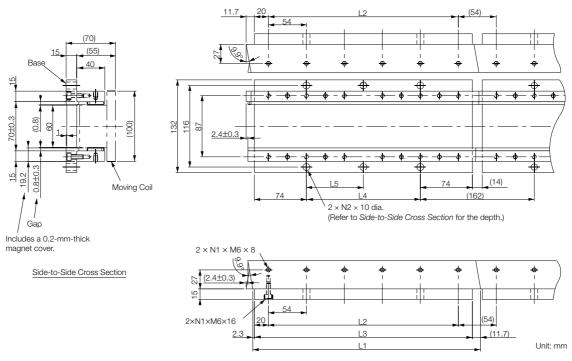
Moving Coil Model SGLTW-	L1	L1 L2 (L3)		N	Approx. Mass [kg]
20A170A	170	144 (48 × 3)	(16)	8	2.5
20A320A	315	288 (48 × 6)	(17)	14	4.6
20A460A	460	432 (48 × 9)	(18)	20	6.7

Refer to the following section for the connector specifications for the Sensor Cable and Servomotor Main Circuit Cable.

SGLTW-20A□□□A□ and -35A□□□A□ Moving Coils (page 211)

◆ Magnetic Ways: SGLTM-20□□□A

Note: 1. Two Magnetic Way tracks are used together as a set. For safety, when they are shipped, the two tracks are secured to a mounting spacer made from aluminum.

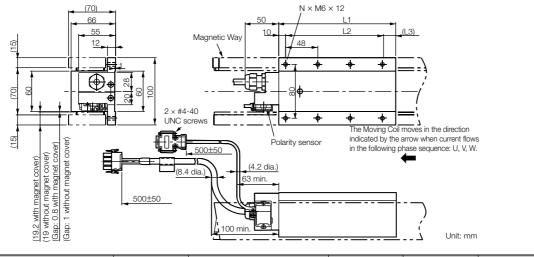

2. More than one Magnetic Way can be connected.

3. Dimensions with asterisks are the distances between the Magnetic Way tracks. Install the tracks according to the specified dimensions. Observe the dimensions given in *Mounting Section Details* after installation. Dimensions when the Magnetic Way is shipped from the factory are indicated by ♣.

4. Use socket head screws of strength class 10.9 or higher for the Magnetic Way mounting screws. (Do not use stainless steel screws.)

Magnetic Way Model SGLTM-	L1	L2	LA	LB	LC	LD	Ν	Approx. Mass [kg]
20324A	324 -0.3	270 (54 × 5)	31.7 -0.2	13.7 0-0.2	40.3 0.2	62 +0.6	6	3.4
20540A	540 -0.3	486 (54 × 9)	31.7 .0.2	13.7 -0.2	40.3 0.2	$62^{+0.6}_{0}$	10	5.7
20756A D	756 -0.1	702 (54 × 13)	31.7 -0.2	13.7 -0.2	40.3 -0.2	62 +0.6	14	7.9

◆ Magnetic Ways with Bases: SGLTM-20□□□AY

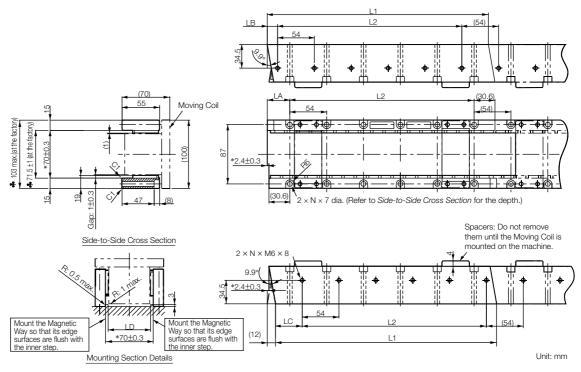


Note: Two Magnetic Way tracks are used together as a set. More than one Magnetic Way can be connected.

Magnetic Way Model SGLTM-	L1	L2	L3	L4	L5	N1	N2	Approx. Mass [kg]
20324AY	324 -0.3	270	310	162	162	6	2	5.1
20540AY	540 -0.3	486	526	378	189	10	3	8.5
20756AY	756 -0.1	702	742	594	198	14	4	12

SGLTW-35: Standard Models

◆ Moving Coils: SGLTW-35A□□□A□

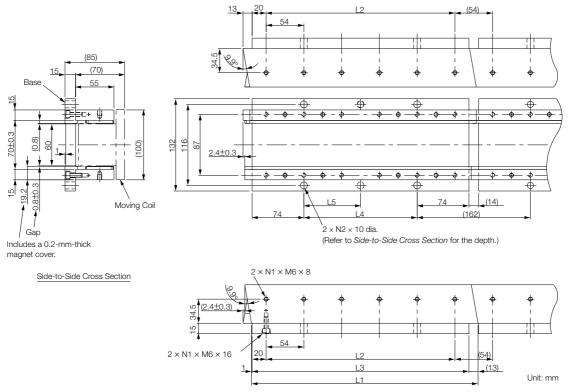


Moving Coil Model SGLTW-	L1	L2	(L3)	N	Approx. Mass [kg]
35A170Aロ	170	144 (48 × 3)	(16)	8	3.7
35A320Aロ	315	288 (48 × 6)	(17)	14	6.8
35A460Aロ	460	432 (48 × 9)	(18)	20	10

Refer to the following section for the connector specifications for the Sensor Cable and Servomotor Main Circuit Cable.

SGLTW-20A□□□A□ and -35A□□□□A□ Moving Coils (page 211)

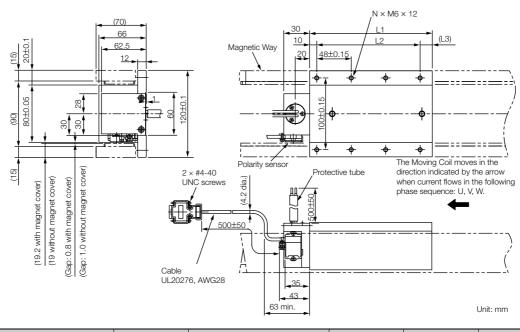
◆ Magnetic Ways: SGLTM-35□□□A□



Note: 1. Two Magnetic Way tracks are used together as a set. For safety, when they are shipped, the two tracks are secured to a mounting spacer made from aluminum.

- 2. More than one Magnetic Way can be connected.
- 3. Dimensions with asterisks are the distances between the Magnetic Way tracks. Install the tracks according to the specified dimensions. Observe the dimensions given in *Mounting Section Details* after installation. Dimensions when the Magnetic Way is shipped from the factory are indicated by ♣.
- 4. Use socket head screws of strength class 10.9 or higher for the Magnetic Way mounting screws. (Do not use stainless steel screws.)

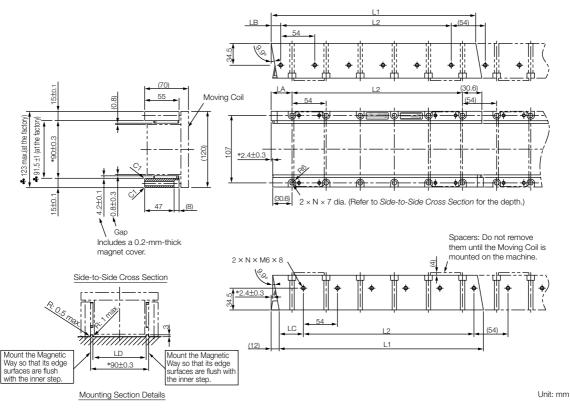
Magnetic Way Model SGLTM-	L1	L2	LA	LB	LC	LD	Ν	Approx. Mass [kg]
35324A□	324 -0.3	270 (54 × 5)	33 .0.2	15 .0.2	39 .0.2	62 +0.6	6	4.8
35540A□	540 -0.3	486 (54 × 9)	33 .0.2	15 .0.2	39 .0.2	62 +0.6	10	8
35756A□	756 -0.1	702 (54 × 13)	33 .0.2	15 .0.2	39 .0.2	62 +0.6	14	11


◆ Magnetic Ways with Bases: SGLTM-35□□□AY

Note: Two Magnetic Way tracks are used together as a set. More than one Magnetic Way can be connected.

Magnetic Way Model SGLTM-	L1	L2	L3	L4	L5	N1	N2	Approx. Mass [kg]
35324AY	324 -0.3	270	310	162	162	6	2	6.4
35540AY	540 -0.1	486	526	378	189	10	3	11
35756AY	756 -0.1	702	742	594	198	14	4	15

SGLTW-35DDDDHD: High-Efficiency Models

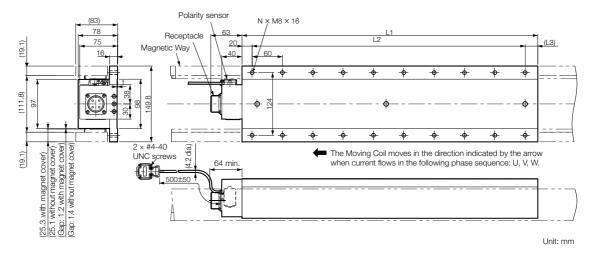

◆ Moving Coils: SGLTW-35A□□□H□

Moving Coil Model SGLTW-	L1	L2	L3	N	Approx. Mass [kg]
35A170Hロ	170	144 (48 × 3)	(16)	8	4.7
35A320Hロ	315	288 (48 × 6)	(17)	14	8.8

Refer to the following section for the connector specifications for the Sensor Cable and Servomotor Main Circuit Cable.

SGLTW-35A□□□H□ and -50A□□□H□ Moving Coils (page 212)

◆ Magnetic Ways: SGLTM-35□□□H□

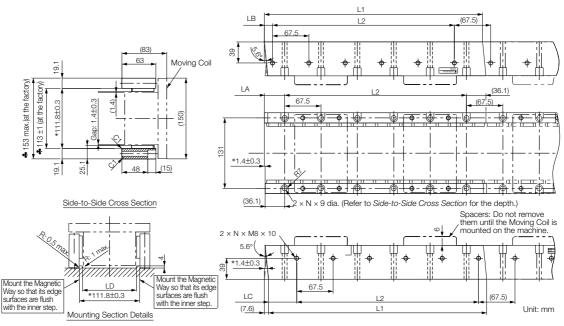

Note: 1. Two Magnetic Way tracks are used together as a set. For safety, when they are shipped, the two tracks are secured to a mounting spacer made from aluminum.

- 2. More than one Magnetic Way can be connected.
- 3. Dimensions with asterisks are the distances between the Magnetic Way tracks. Install the tracks according to the specified dimensions. Observe the dimensions given in *Mounting Section Details* after installation. Dimensions when the Magnetic Way is shipped from the factory are indicated by ♣.
- 4. Use socket head screws of strength class 10.9 or higher for the Magnetic Way mounting screws. (Do not use stainless steel screws.)

Magnetic Way Model SGLTM-	L1	L2	LA	LB	LC	LD	Ν	Approx. Mass [kg]
35324H □	324 -0.1	270 (54 × 5)	33 .0.2	15 _{-0.2}	39 .0.2	82 +0.6	6	4.8
35540H □	540 -0.1	486 (54 × 9)	33 .0.2	15 .0.2	39 .0.2	82 +0.6	10	8
35756H□	756 -0.1	702 (54 × 13)	33 .0.2	15 .0.2	39 .0.2	82 +0.6	14	11

SGLTW-40: Standard Models

◆ Moving Coils: SGLTW-40A□□□B□



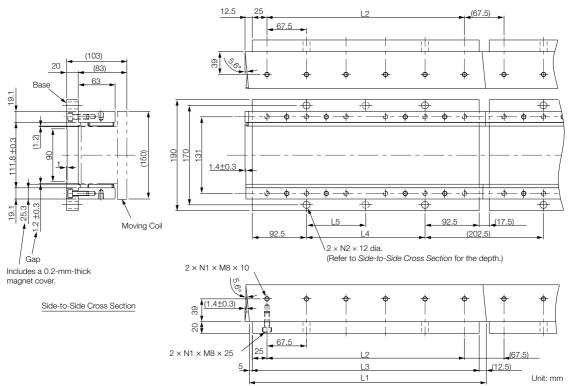
Moving Coil Model SGLTW-	L1	L2	(L3)	Ν	Approx. Mass [kg]
40A400Bロ	394.2	360 (60 × 6)	(15)	14	15
40A600B D	574.2	540 (60 × 9)	(15)	20	22

Refer to the following section for the connector specifications for the Sensor Cable and Servomotor Main Circuit Cable.

SGLTW-40A□□□B□ and -80A□□□B□ Moving Coils (page 211)

◆ Magnetic Ways: SGLTM-40□□□A□

Note: 1. Two Magnetic Way tracks are used together as a set. For safety, when they are shipped, the two tracks are secured to a mounting spacer made from aluminum.


2. More than one Magnetic Way can be connected.

3. Dimensions with asterisks are the distances between the Magnetic Way tracks. Install the tracks according to the specified dimensions. Observe the dimensions given in *Mounting Section Details* after installation. Dimensions when the Magnetic Way is shipped from the factory are indicated by ♣.

4. Use socket head screws of strength class 10.9 or higher for the Magnetic Way mounting screws. (Do not use stainless steel screws.)

Magnetic Way Model SGLTM-	L1	L2	LA	LB	LC	LD	Ν	Approx. Mass [kg]
40405AD	405 +0.1	337.5 (67.5 × 5)	37.5 0.2	15 .0.2	52.5 0.2	100 +0.6	6	9
40675AD	675 ^{-0.1}	607.5 (67.5 × 9)	37.5 0.2	15 .0.2	52.5 0.2	100 +0.6	10	15
40945AD	945 -0.1	877.5 (67.5 × 13)	37.5 -0.2	15 .0.2	52.5 0	100 +0.6	14	21

◆ Magnetic Ways with Bases: SGLTM-40□□□AY

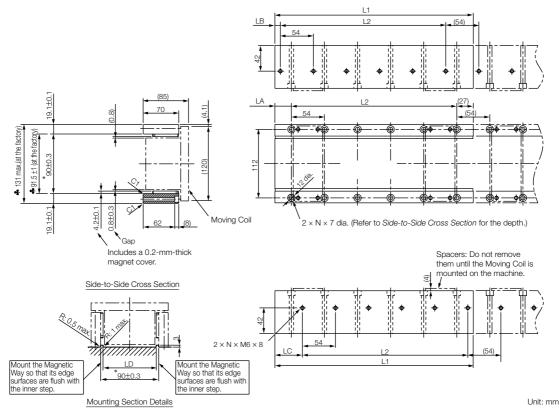


Note: Two Magnetic Way tracks are used together as a set. More than one Magnetic Way can be connected.

Magnetic Way Model SGLTM-	L1	L2	L3	L4	L5	N1	N2	Approx. Mass [kg]
40405AY	405 -0.3	337.5	387.5	202.5	202.5	6	2	13
40675AY	675 -0.1	607.5	657.5	472.5	236.25	10	3	21
40945AY	945 -0.1	877.5	927.5	742.5	247.5	14	4	30

SGLTW-50: High-Efficiency Models

◆ Moving Coils: SGLTW-50A□□□H□

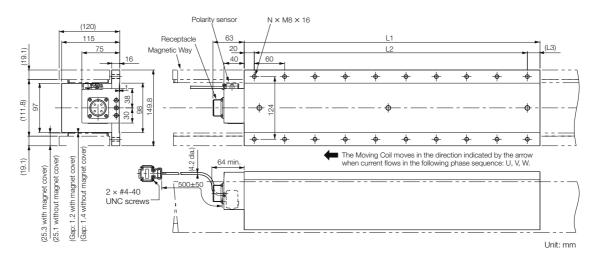


Moving Coil Model SGLTW-	L1	L2	(L3)	N	Approx. Mass [kg]
50A170Hロ	170	144 (48 × 3)	(16)	8	6
50A320Hロ	315	288 (48 × 6)	(17)	14	11

Refer to the following section for the connector specifications for the Sensor Cable and Servomotor Main Circuit Cable.

SGLTW-35A□□□H□ and -50A□□□H□ Moving Coils (page 212)

◆ Magnetic Ways: SGLTM-50□□□H□

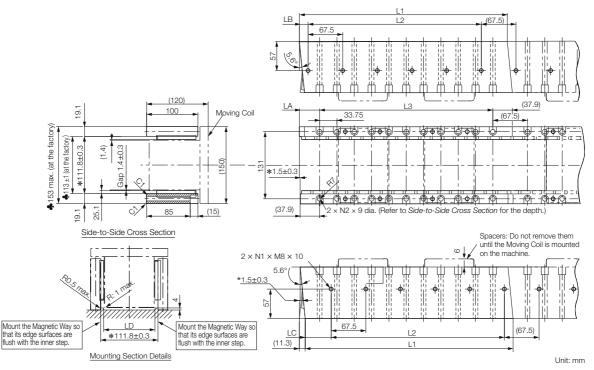

Note: 1. Two Magnetic Way tracks are used together as a set. For safety, when they are shipped, the two tracks are secured to a mounting spacer made from aluminum.

- 2. More than one Magnetic Way can be connected.
- 3. Dimensions with asterisks are the distances between the Magnetic Way tracks. Install the tracks according to the specified dimensions. Observe the dimensions given in *Mounting Section Details* after installation. Dimensions when the Magnetic Way is shipped from the factory are indicated by ♣.
- 4. Use socket head screws of strength class 10.9 or higher for the Magnetic Way mounting screws. (Do not use stainless steel screws.)

Magnetic Way Model SGLTM-	L1	L2	LA	LB	LC	LD	Ν	Approx. Mass [kg]
50324H□	324 -0.1	270 (54 × 5)	27 _{-0.2}	9 .0.2	45 .0.2	82 +0.6	6	8
50540H D	540 -0.1	486 (54 × 9)	27 _{-0.2}	9 .0.2	45 .0.2	82 +0.6	10	13
50756HD	756 -0.1	702 (54 × 13)	27 .0.2	9 .0.2	45 .0.2	82 +0.6	14	18

SGLTW-80: Standard Models

◆ Moving Coils: SGLTW-80A□□□B□



Moving Coil Model Approx. Mass L2 L1 (L3) Ν SGLTW-[kg] 394.2 360 (60 × 6) 80A400Bロ (15) 14 24 80A600Bロ 574.2 540 (60 × 9) (15) 20 35

Refer to the following section for the connector specifications for the Sensor Cable and Servomotor Main Circuit Cable.

SGLTW-40A□□□B□ and -80A□□□□B□ Moving Coils (page 211)

◆ Magnetic Ways: SGLTM-80□□□A□

Note: 1. Two Magnetic Way tracks are used together as a set. For safety, when they are shipped, the two tracks are secured to a mounting spacer made from aluminum.

- 2. More than one Magnetic Way can be connected.
- 3. Dimensions with asterisks are the distances between the Magnetic Way tracks. Install the tracks according to the specified dimensions. Observe the dimensions given in *Mounting Section Details* after installation. Dimensions when the Magnetic Way is shipped from the factory are indicated by .
- 4. Use socket head screws of strength class 10.9 or higher for the Magnetic Way mounting screws. (Do not use stainless steel screws.)

Magnetic Way Model SGLTM-	L1	L2	L3	LA	LB	LC	LD	N1	N2	Approx. Mass [kg]
80405Aロ	405 -0.1	337.5 (67.5 × 5)	337.5 (33.75 × 10)	39.4 0.2	16.9 0.2	50.6 0.0	100 0+0.6	6	11	14
80675A□	675 ^{-0.1}	607.5 (67.5 × 9)	607.5 (33.75 × 18)	39.4 ⁰ _{-0.2}	16.9 0.2	50.6 0	100 0+0.6	10	19	24
80945Aロ	945 -0.1	877.5 (67.5 × 13)	887.5 (33.75 × 26)	39.4 0.2	16.9 0-0.2	50.6 -0.2	100 0+0.6	14	27	34

◆ Magnetic Ways with Bases: SGLTM-80□□□AY

Note: Two Magnetic Way tracks are used together as a set. More than one Magnetic Way can be connected.

Magnetic Way Model SGLTM-	L1	L2	L3	L4	L5	N1	N2	N3	Approx. Mass [kg]
80405AY	405 -0.1	337.5	387.5	202.5	202.5	6	2	11	18
80675AY	675 -0.1	607.5	657.5	472.5	236.25	10	3	19	31
80945AY	945 -0.1	877.5	927.5	742.5	247.5	14	4	27	43

Connector Specifications

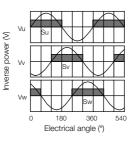
♦ SGLTW-20A□□□A□ and -35A□□□A□ Moving Coils

Servomotor Connector

Plug: 350779-1 Pins: 350218-3 or 350547-3 (No.1 to 3) 350654-1 or 350669-1 (No. 4) Tyco Electronics Japan G.K.

Mating Connector Cap: 350780-1 Socket: 350537-3 or 350550-3

• Polarity Sensor Connector



Pin connector: 17JE-23090-02 (D8C) From DDK Ltd.

Mating Connector Socket connector: 17JE-13090-02 (D8C) Studs: 17L-002C or 17L-002C1

Polarity Sensor Output Signal

The figure on the right shows the relationship between the Su, Sv, and Sw polarity sensor output signals and the inverse power of each motor phase Vu, Vv, and Vw when the Moving Coil moves in the direction indicated by the arrow in the dimensional drawings of the Moving Coil.

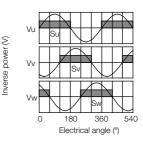
◆ SGLTW-40A□□□B□ and -80A□□□B□ Moving Coils

Servomotor Connector

Receptacle: MS3102A-22-22P From DDK Ltd.

Mating Connector Right-angle plug: MS3108B22-22S Straight plug: MS3106B22-22S Cable clamp: MS3057-12A

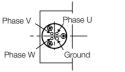
• Polarity Sensor Connector



Pin connector: 17JE-23090-02 (D8C) From DDK Ltd.

Mating Connector Socket connector: 17JE-13090-02 (D8C) Studs: 17L-002C or 17L-002C1

• Polarity Sensor Output Signal


The figure on the right shows the relationship between the Su, Sv, and Sw polarity sensor output signals and the inverse power of each motor phase Vu, Vv, and Vw when the Moving Coil moves in the direction indicated by the arrow in the dimensional drawings of the Moving Coil.

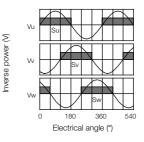
♦ SGLTW-35A□□H□ and -50A□□□H□ Moving Coils

Moving Coil Lead

Secure the lead from the Moving Coil of the Linear Servomotor so that it moves together with the Moving Coil.

(Viewed from the top surface of the Moving Coil.)

• Polarity Sensor Connector



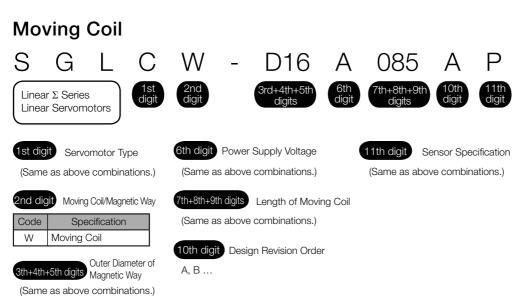
Pin connector: 17JE-23090-02 (D8C) From DDK Ltd.

Mating Connector Socket connector: 17JE-13090-02 (D8C) Studs: 17L-002C or 17L-002C1

• Polarity Sensor Output Signal

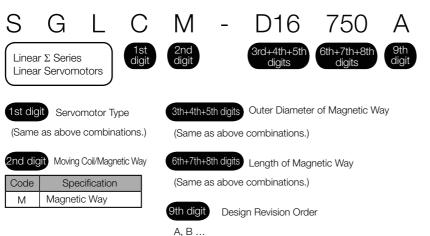
The figure on the right shows the relationship between the Su, Sv, and Sw polarity sensor output signals and the inverse power of each motor phase Vu, Vv, and Vw when the Moving Coil moves in the direction indicated by the arrow in the dimensional drawings of the Moving Coil.

SGLC (Cylinder Models)

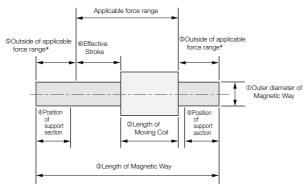

Model Designations

Combination of Moving Coil and Magnetic Way									
S	G L	. C	-	D16	6 A	08	5	A P	- 750 A
	r Σ Series r Servomotors	1st digit		2nd+3rd+4 digits	digit	6th+7th digit		9th digit digit	
1st dig	git Servomotor	Туре	6th+7th	+8th digits	Length of Moving Co	oil*1	11th+	12th+13th di	tength of Magnetic Way ^{*1}
Code	Specificatio	n	Code	Specification	Outer Diamet		Code	Specification	Special Orders*2
С	Cylinder mode	el			of Magnetic V	Nay	300	300 mm	240 mm to 420 mm (in 30-mm increments)
			085	85 mm	D16		350	350 mm	280 mm to 490 mm (in 35-mm increments)
2nd+3r	d+4th digits		100	100 mm	D20		450	450 mm	360 mm to 630 mm (in 45-mm increments)
	ameter of Magnet	ic Mov*l	115	115 mm	D16		510	510 mm	480 mm to 750 mm (in 30-mm increments)
	<u> </u>	,	125	125 mm	D25		590	590 mm	555 mm to 870 mm (in 35-mm increments)
Code	Specificatio	n	135	135 mm	D20		600	600 mm	480 mm to 840 mm (in 60-mm increments)
D16	16 mm		145	145 mm	D16				For Magnetic Way with outer diameter of
D20	20 mm		165	165 mm	D32				16 mm: 480 mm to 750 mm (in 30-mm increments)
D25	25 mm		170	170 mm	D20, D25	5	750	750 mm	For Magnetic Way with outer diameter of
D32	32 mm		215	215 mm	D25				25 mm:
			225	225 mm	D32				705 mm to 1,110 mm (in 45-mm increments)
5th dig	it Power Supply	/ Voltage	285	285 mm	D32		870	870 mm	555 mm to 870 mm (in 35-mm increments)
Code	Specificatio						1020	1020 mm	960 mm to 1,500 mm (in 60-mm increments)
A	200 VAC	11	9th dig		Revision C	Drder	1110	1110 mm	705 mm to 1,110 mm (in 45-mm increments)
A	200 VAC				ring Coil		1500	1500 mm	960 mm to 1,500 mm (in 60-mm increments)
			A, B 10th c Code P			tion	14th d A, B	0	Revision Order of Magnetic Way

*1. There are restrictions in the allowable combinations. Refer to the following section for details.


*2. Contact your Yaskawa representative when you make an order.

- Note: 1. Order the Moving Coil and Magnetic Way as a set. Contact your Yaskawa representative before purchasing a Moving Coil and Magnetic Way separately.
 - 2. This information is provided to explain model numbers. It is not meant to imply that models are available for all combinations of codes.


- Note: 1. Order the Moving Coil and Magnetic Way as a set. Contact your Yaskawa representative before purchasing a Moving Coil and Magnetic Way separately.
 - 2. This information is provided to explain model numbers. It is not meant to imply that models are available for all combinations of codes.

Magnetic Way

- Note: 1. Order the Moving Coil and Magnetic Way as a set. Contact your Yaskawa representative before purchasing a Moving Coil and Magnetic Way separately.
 - 2. This information is provided to explain model numbers. It is not meant to imply that models are available for all combinations of codes.

List of Models

	0	2	3	4	5	6
Model SGLC-	Outer diameter of Mag- netic Way [mm]	Length of Moving Coil [mm]	Length of Magnetic Way [mm]	Position of Support Section [mm]	Outside of Applicable Force Range [*] [mm]	Effective Stroke [mm]
D16A085AP-300A			300	30	37.5	140
D16A085AP-510A	16	85	510	45	52.5	320
D16A085AP-750A			750	45	52.5	560
D16A115AP-300A			300	30	37.5	110
D16A115AP-510A	16	115	510	45	52.5	290
D16A115AP-750A			750	45	52.5	530
D16A145AP-300A			300	30	37.5	80
D16A145AP-510A	16	145	510	45	52.5	260
D16A145AP-750A			750	45	52.5	500
D20A100AP-350A			350	35	45	160
D20A100AP-590A	20	100	590	50	60	370
D20A100AP-870A			870	50	60	650
D20A135AP-350A			350	35	45	125
D20A135AP-590A	20	135	590	50	60	335
D20A135AP-870A			870	50	60	615
D20A170AP-350A			350	35	45	90
D20A170AP-590A	20	170	590	50	60	300
D20A170AP-870A			870	50	60	580
D25A125AP-450A			450	45	57.5	210
D25A125AP-750A	25	125	750	60	72.5	480
D25A125AP-1110A			1110	60	72.5	840
D25A170AP-450A			450	45	57.5	165
D25A170AP-750A	25	170	750	60	72.5	435
D25A170AP-1110A			1110	60	72.5	795
D25A215AP-450A			450	45	57.5	120
D25A215AP-750A	25	215	750	60	72.5	390
D25A215AP-1110A			1110	60	72.5	750
D32A165AP-600A			600	60	75	285
D32A165AP-1020A	32	165	1020	90	105	645
D32A165AP-1500A			1500	90	105	1125
D32A225AP-600A			600	60	75	225
D32A225AP-1020A	32	225	1020	90	105	585
D32A225AP-1500A			1500	90	105	1065
D32A285AP-600A			600	60	75	165
D32A285AP-1020A	32	285	1020	90	105	525
D32A285AP-1500A			1500	90	105	1005

* The characteristics given in *Force-Motor Speed Characteristics* on page 218 will not be met when the Moving Coil is outside of applicable force range.

Specifications and Ratings

Specifications

Linear Serve	omotor Model		D16A			D20A			D25A		D32A		
SC	GLC-	085A	115A	145A	100A	135A	170A	125A	170A	215A	165A	225A	285A
Time Ratin	g						Contin	luous					
Thermal Cl	lass						В						
Insulation I	Resistance					500	VDC, 1	$0 \ M\Omega$ n	nin.				
Withstand	Voltage					1,500) VAC f	or 1 mir	nute				
Excitation		Permanent magnet											
Cooling Me	ethod	Self-cooled											
Protective	Structure	IP00											
	Surround- ing Air Tempera- ture		0°C to 40°C (with no freezing)										
Environ- mental Condi-	Surround- ing Air Humidity			20%	to 80%	relative	e humid	lity (with	no co	ndensa	ation)		
tions	Installation Site	 Must be indoors and free of corrosive and explosive gases. Must be well-ventilated and free of dust and moisture. Must facilitate inspection and cleaning. Must have an altitude of 1,000 m or less. Must be free of strong magnetic fields. 											
Shock Resis-	Impact Accelera- tion Rate						98 m	ז∕s²					
tance	Number of Impacts						2 tin	nes					
Vibration Resis- tance	Vibration Accelera- tion Rate		:	side, ar y:24.5	nd front m/s² (tl	-to-bac ne vibra	k) Ition res	ance in sistance norizont	e in the	directio	on of th	ne shaft	
Combined Way, SGLC		D	16000	A	D		JA	D2		A	D	32000	JA
Combined Converter JZDP-	Unit,	354 373 356 357 358 359 360 374 362 363		363	364	365							
Applica- ble	SGD7S-	R70A	R70A	R90A	1R6A	1R6A	2R8A	1R6A	2R8A	5R5A	2R8A	5R5A	5R5A
SERVO- PACKs	SGD7W-	1R6A	1R6A	1R6A	1R6A	1R6A	2R8A	1R6A	2R8A	5R5A	2R8A	5R5A	5R5A

Ratings

Linear Servomotor Model			D16A			D20A			D25A		D32A		
SGLC-		085A	115A	145A	100A	135A	170A	125A	170A	215A	165A	225A	285A
Rated Motor Speed (Refer- ence Speed during Speed Control) ^{*1}	m/s	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5	1.5
Maximum Speed ^{*1, *3}	m/s	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
Rated Force ^{*1, *2}	Ν	17	25	34	30	45	60	70	105	140	90	135	180
Maximum Force ^{*1}	N	60	90	120	150	225	300	280	420	560	420	630	840
Rated Current ^{*1}	Arms	0.59	0.53	0.66	0.98	0.98	1.2	1.4	1.8	3.5	1.6	2.8	2.8
Maximum Current ^{*1}	Arms	2.1	2.1	2.5	4.9	4.9	6.0	5.7	7.0	13.0	7.3	13.0	13.0
Moving Coil Mass	kg	0.30	0.40	0.50	0.60	0.80	1.0	1.0	1.4	1.8	1.8	2.5	3.2
Force Constant	N/ Arms	31.2	46.8	51.3	33.0	49.5	54.3	53.1	64.8	43.2	61.8	52.2	69.6
BEMF Constant	Vrms/ (m/s)/ phase	10.4	15.6	17.1	11.0	16.5	18.1	17.7	21.6	14.4	20.6	17.4	23.2
Motor Constant	N/\sqrt{W}	4.78	5.85	6.67	7.47	9.18	10.4	10.0	12.4	15.4	16.2	20.0	23.0
Electrical Time Constant	ms	0.18	0.18	0.17	0.38	0.32	0.41	0.18	0.59	0.65	0.98	1.0	1.1
Mechanical Time Constant	ms	13	12	11	11	9.5	9.2	10	9.1	7.6	6.9	6.3	6.0
Thermal Resistance (with Heat Sink)	K/W	3.35	2.90	1.64	1.66	1.45	1.29	1.00	0.68	0.61	0.77	0.53	0.49
Thermal Resistance (without Heat Sink)	K/W	6.79	5.24	4.26	4.35	3.38	2.76	2.99	2.29	1.81	1.87	1.43	1.16
Magnetic Attraction ^{*4}	Ν	0	0	0	0	0	0	0	0	0	0	0	0

*1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. The values for other items are at 20°C. These are typical values.

*2. The rated forces are the continuous allowable force values at a surrounding air temperature of 40°C with an aluminum heat sink of the dimensions given in the following table.

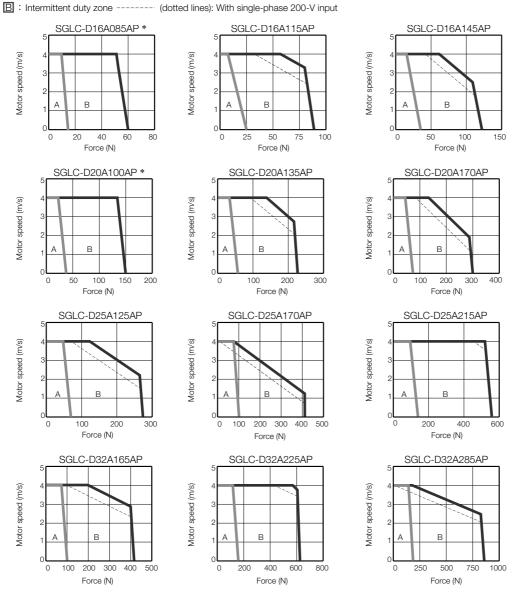
Heat Sink Dimensions

• 100 mm × 200 mm × 12 mm: SGLC-D16A085A and -D16A115A

+ 200 mm \times 300 mm \times 12 mm: SGLC-D16A145A, -D20A100A, -D20A135A, and -D20A170A

• 300 mm × 400 mm × 12 mm: SGLC-D25A125A and -D32A165A

• 400 mm × 500 mm × 12 mm: SGLC-D25A170A, -D25A215A, -D32A225A, and -D32A285A

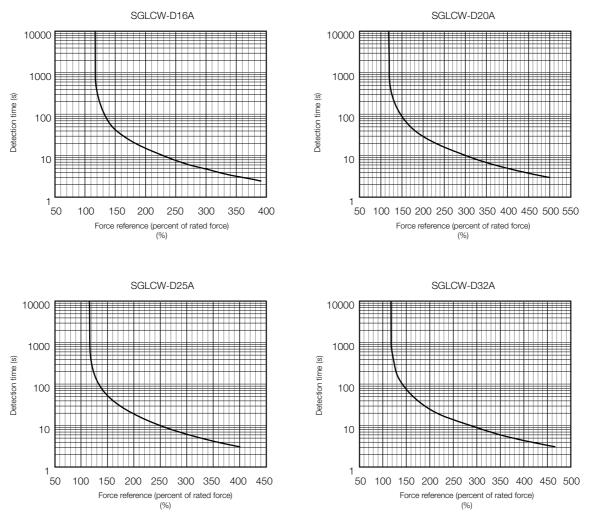

*3. For speed control operation with an analog voltage reference, set 1.5 m/s as the rated motor speed.

*4. This is the theoretical magnetic attraction between the Moving Coil and Magnetic Way. The unbalanced magnetic gap after installation causes a magnetic attraction.

Force-Motor Speed Characteristics

A : Continuous duty zone -

- (solid lines): With three-phase 200-V input

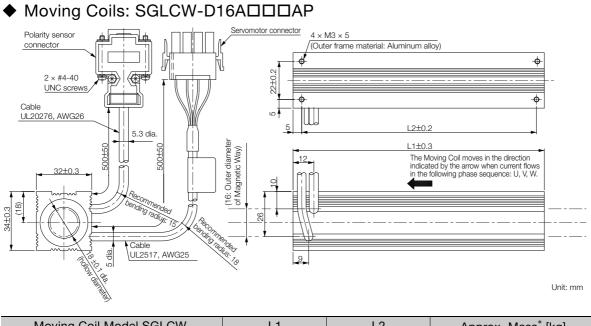

* The characteristics are the same for three-phase 200 V and single-phase 200 V.

Note: 1. These values are for operation in combination with a SERVOPACK when the temperature of the armature winding is 100°C. These are typical values.

- 2. The characteristics in the intermittent duty zone depend on the power supply voltage.
- 3. If the effective force is within the allowable range for the rated force, the Servomotor can be used within the intermittent duty zone.
- 4. If you use a Servomotor Main Circuit Cable that exceeds 20 m, the intermittent duty zone in the torque-motor speed characteristics will become smaller because the voltage drop increases.

Servomotor Overload Protection Characteristics

The overload detection level is set for hot start conditions with a Servomotor surrounding air temperature of 40°C.

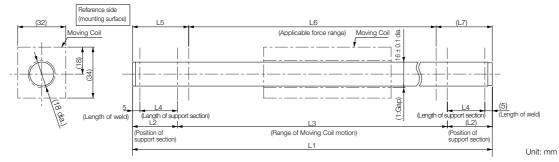


Note: The above overload protection characteristics do not mean that you can perform continuous duty operation with an output of 100% or higher.

Use the Servomotor so that the effective force remains within the continuous duty zone given in *Force-Motor Speed Characteristics* on page 218.

External Dimensions

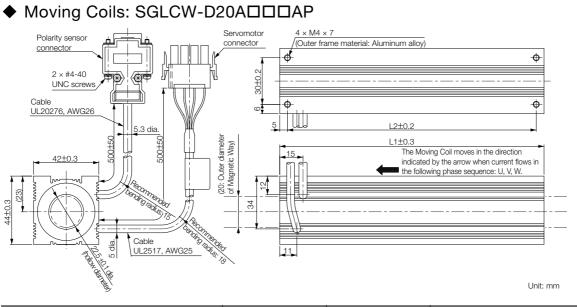
SGLC-D16


Moving Coil Model SGLCW-	L1	L2	Approx. Mass [*] [kg]
D16A085AP	85	75	0.3
D16A115AP	115	105	0.4
D16A145AP	145	135	0.5

* The mass is for a Moving Coil with a Polarity Sensor.

Refer to the following section for the connector specifications for the Sensor Cable and Servomotor Main Circuit Cable.

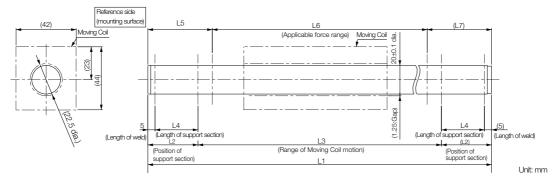
220


◆ Magnetic Ways: SGLCM-D16□□□A

Note: The Magnetic Way will become deformed if a magnetic attraction with the Moving Coil is generated. After installation, take measures over the entire range of motion to prevent any contact between the Magnetic Way and the Moving Coil.

Magnetic Way Model SGLCM-	L1	L2	L3	L4	L5	L6	L7	Approx. Mass [kg]
D16240A	240 ± 1.6	30	180	25	37.5 ± 0.3	165 ± 1.2	37.5	0.38
D16270A	270 ± 1.6	30	210	25	37.5 ± 0.3	195 ± 1.2	37.5	0.43
D16300A	300 ± 1.6	30	240	25	37.5 ± 0.3	225 ± 1.2	37.5	0.48
D16330A	330 ± 1.6	30	270	25	37.5 ± 0.3	255 ± 1.2	37.5	0.53
D16360A	360 ± 1.6	30	300	25	37.5 ± 0.3	285 ± 1.2	37.5	0.58
D16390A	390 ± 1.6	30	330	25	37.5 ± 0.3	315 ± 1.2	37.5	0.63
D16420A	420 ± 1.6	30	360	25	37.5 ± 0.3	345 ± 1.2	37.5	0.68
D16480A	480 ± 2.5	45	390	40	52.5 ± 0.3	375 ± 2.1	52.5	0.75
D16510A	510 ± 2.5	45	420	40	52.5 ± 0.3	405 ± 2.1	52.5	0.80
D16540A	540 ± 2.5	45	450	40	52.5 ± 0.3	435 ± 2.1	52.5	0.85
D16570A	570 ± 2.5	45	480	40	52.5 ± 0.3	465 ± 2.1	52.5	0.90
D16600A	600 ± 2.5	45	510	40	52.5 ± 0.3	495 ± 2.1	52.5	0.95
D16630A	630 ± 2.5	45	540	40	52.5 ± 0.3	525 ± 2.1	52.5	1.00
D16660A	660 ± 2.5	45	570	40	52.5 ± 0.3	555 ± 2.1	52.5	1.05
D16690A	690 ± 2.5	45	600	40	52.5 ± 0.3	585 ± 2.1	52.5	1.10
D16720A	720 ± 2.5	45	630	40	52.5 ± 0.3	615 ± 2.1	52.5	1.15
D16750A	750 ± 3.0	45	660	40	52.5 ± 0.3	645 ± 2.5	52.5	1.20

SGLC-D20

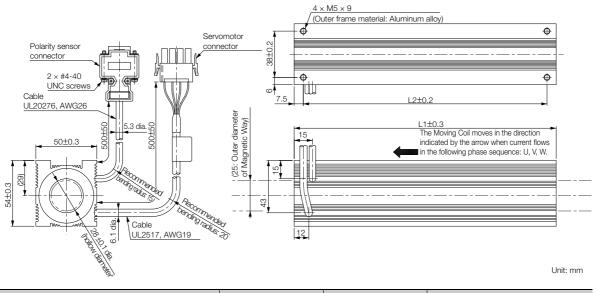

Moving Coil Model SGLCW-	L1	L2	Approx. Mass [*] [kg]
D20A100AP	100	90	0.6
D20A135AP	135	125	0.8
D20A170AP	170	160	1.0

* The mass is for a Moving Coil with a Polarity Sensor.

Refer to the following section for the connector specifications for the Sensor Cable and Servomotor Main Circuit Cable.

€ SGLC-D16 and -D20 Moving Coils (page 228)

◆ Magnetic Ways: SGLCM-D20□□□A

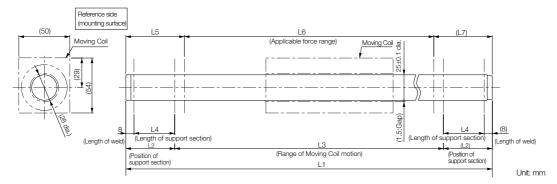


Note: The Magnetic Way will become deformed if a magnetic attraction with the Moving Coil is generated. After installation, take measures over the entire range of motion to prevent any contact between the Magnetic Way and the Moving Coil.

Magnetic Way Model SGLCM-	L1	L2	L3	L4	L5	L6	L7	Approx. Mass [kg]
D20280A	280 ± 1.6	35	210	30	45 ± 0.3	190 ± 1.2	45	0.68
D20315A	315 ± 1.6	35	245	30	45 ± 0.3	225 ± 1.2	45	0.77
D20350A	350 ± 1.6	35	280	30	45 ± 0.3	260 ± 1.2	45	0.86
D20385A	385 ± 1.6	35	315	30	45 ± 0.3	295 ± 1.2	45	0.95
D20420A	420 ± 1.6	35	350	30	45 ± 0.3	330 ± 1.2	45	1.00
D20455A	455 ± 1.6	35	385	30	45 ± 0.3	365 ± 1.2	45	1.10
D20490A	490 ± 1.6	35	420	30	45 ± 0.3	400 ± 1.2	45	1.20
D20555A	555 ± 2.5	50	455	45	60 ± 0.3	435 ± 2.1	60	1.35
D20590A	590 ± 2.5	50	490	45	60 ± 0.3	470 ± 2.1	60	1.45
D20625A	625 ± 2.5	50	525	45	60 ± 0.3	505 ± 2.1	60	1.55
D20660A	660 ± 2.5	50	560	45	60 ± 0.3	540 ± 2.1	60	1.60
D20695A	695 ± 2.5	50	595	45	60 ± 0.3	575 ± 2.1	60	1.70
D20730A	730 ± 2.5	50	630	45	60 ± 0.3	610 ± 2.1	60	1.80
D20765A	765 ± 2.5	50	665	45	60 ± 0.3	645 ± 2.1	60	1.90
D20800A	800 ± 2.5	50	700	45	60 ± 0.3	680 ± 2.1	60	2.00
D20835A	835 ± 2.5	50	735	45	60 ± 0.3	715 ± 2.1	60	2.10
D20870A	870 ± 3.0	50	770	45	60 ± 0.3	750 ± 2.5	60	2.20

SGLC-D25

◆ Moving Coils: SGLCW-D25A□□□AP

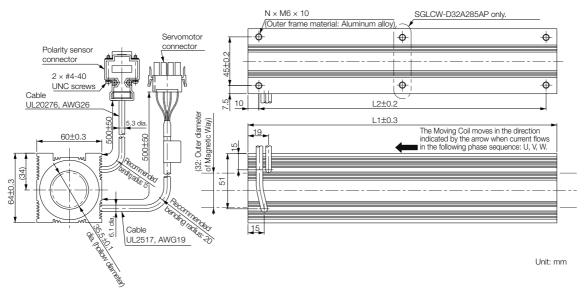


Moving Coil Model SGLCW-	L1	L2	Approx. Mass [*] [kg]
D25A125AP	125	110	1.0
D25A170AP	170	153	1.4
D25A215AP	215	200	1.8

* The mass is for a Moving Coil with a Polarity Sensor.

Refer to the following section for the connector specifications for the Sensor Cable and Servomotor Main Circuit Cable.

◆ Magnetic Ways: SGLCM-D25□□□A

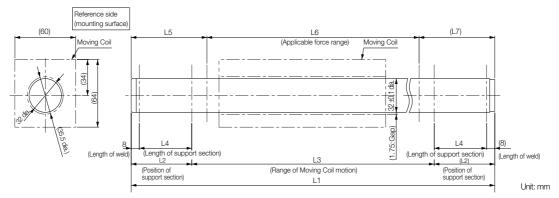


Note: The Magnetic Way will become deformed if a magnetic attraction with the Moving Coil is generated. After installation, take measures over the entire range of motion to prevent any contact between the Magnetic Way and the Moving Coil.

Magnetic Way Model SGLCM-	L1	L2	L3	L4	L5	L6	L7	Approx. Mass [kg]
D25360A	360 ± 1.6	45	270	37	57.5 ± 0.3	245 ± 1.2	57.5	1.50
D25405A	405 ± 1.6	45	315	37	57.5 ± 0.3	290 ± 1.2	57.5	1.65
D25450A	450 ± 1.6	45	360	37	57.5 ± 0.3	335 ± 1.2	57.5	1.80
D25495A	495 ± 1.6	45	405	37	57.5 ± 0.3	380 ± 1.2	57.5	1.95
D25540A	540 ± 1.6	45	450	37	57.5 ± 0.3	425 ± 1.2	57.5	2.10
D25585A	585 ± 1.6	45	495	37	57.5 ± 0.3	470 ± 1.2	57.5	2.25
D25630A	630 ± 1.6	45	540	37	57.5 ± 0.3	515 ± 1.2	57.5	2.40
D25705A	705 ± 2.5	60	585	52	72.5 ± 0.3	560 ± 2.1	72.5	2.85
D25750A	750 ± 2.5	60	630	52	72.5 ± 0.3	605 ± 2.1	72.5	3.00
D25795A	795 ± 2.5	60	675	52	72.5 ± 0.3	650 ± 2.1	72.5	3.15
D25840A	840 ± 2.5	60	720	52	72.5 ± 0.3	695 ± 2.1	72.5	3.30
D25885A	885 ± 2.5	60	765	52	72.5 ± 0.3	740 ± 2.1	72.5	3.45
D25930A	930 ± 2.5	60	810	52	72.5 ± 0.3	785 ± 2.1	72.5	3.60
D25975A	975 ± 2.5	60	855	52	72.5 ± 0.3	830 ± 2.1	72.5	3.75
D251020A	1020 ± 2.5	60	900	52	72.5 ± 0.3	875 ± 2.1	72.5	3.90
D251065A	1065 ± 2.5	60	945	52	72.5 ± 0.3	920 ± 2.1	72.5	4.05
D251110A	1110 ± 3.0	60	990	52	72.5 ± 0.3	965 ± 2.5	72.5	4.20

SGLC-D32

◆ Moving Coils: SGLCW-D32A□□□AP


Moving Coil Model SGLCW-	L1	L2	N	Approx. Mass [*] [kg]
D32A165AP	165	145	4	1.8
D32A225AP	225	205	4	2.5
D32A285AP	285	265	6	3.2

* The mass is for a Moving Coil with a Polarity Sensor.

Refer to the following section for the connector specifications for the Sensor Cable and Servomotor Main Circuit Cable.

€ SGLC-D25 and -D32 Moving Coils (page 228)

◆ Magnetic Ways: SGLCM-D32□□□A

Note: The Magnetic Way will become deformed if a magnetic attraction with the Moving Coil is generated. After installation, take measures over the entire range of motion to prevent any contact between the Magnetic Way and the Moving Coil.

Magnetic Way Model SGLCM-	L1	L2	L3	L4	L5	L6	L7	Approx. Mass [kg]
D32480A	480 ± 1.6	60	360	52	75 ± 0.3	330 ± 1.2	75	3.0
D32540A	540 ± 1.6	60	420	52	75 ± 0.3	390 ± 1.2	75	3.4
D32600A	600 ± 1.6	60	480	52	75 ± 0.3	450 ± 1.2	75	3.8
D32660A	660 ± 1.6	60	540	52	75 ± 0.3	510 ± 1.2	75	4.2
D32720A	720 ± 1.6	60	600	52	75 ± 0.3	570 ± 1.2	75	4.6
D32780A	780 ± 1.6	60	660	52	75 ± 0.3	630 ± 1.2	75	5.0
D32840A	840 ± 1.6	60	720	52	75 ± 0.3	690 ± 1.2	75	5.4
D32960A	960 ± 2.5	90	780	82	105 ± 0.3	750 ± 2.1	105	5.9
D321020A	1020 ± 2.5	90	840	82	105 ± 0.3	810 ± 2.1	105	6.3
D321080A	1080 ± 2.5	90	900	82	105 ± 0.3	870 ± 2.1	105	6.7
D321140A	1140 ± 2.5	90	960	82	105 ± 0.3	930 ± 2.1	105	7.1
D321200A	1200 ± 2.5	90	1020	82	105 ± 0.3	990 ± 2.1	105	7.5
D321260A	1260 ± 2.5	90	1080	82	105 ± 0.3	1050 ± 2.1	105	7.9
D321320A	1320 ± 2.5	90	1140	82	105 ± 0.3	1110 ± 2.1	105	8.3
D321380A	1380 ± 2.5	90	1200	82	105 ± 0.3	1170 ± 2.1	105	8.7
D321440A	1440 ± 2.5	90	1260	82	105 ± 0.3	1230 ± 2.1	105	9.1
D321500A	1500 ± 3.0	90	1320	82	105 ± 0.3	1290 ± 2.5	105	9.5

Connector Specifications

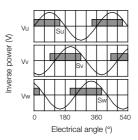
SGLC-D16 and -D20 Moving Coils

Servomotor Connector

Plug: 350779-1 Pins: 350561-3 or 350690-3 (No.1 to 3) 770210-1 (No. 4) Tyco Electronics Japan G.K.

Mating Connector Cap: 350780-1 Socket: 350925-1 or 770673-1

• Polarity Sensor Connector



Pin connector: 17JE-23090-02 (D8C) From DDK Ltd. Mating Connector

Socket connector: 17JE-13090-02 (D8C) Studs: 17L-002C or 17L-002C1

• Polarity Sensor Output Signal

The figure on the right shows the relationship between the Su, Sv, and Sw polarity sensor output signals and the inverse power of each motor phase Vu, Vv, and Vw when the Moving Coil moves in the direction indicated by the arrow in the dimensional drawings of the Moving Coil.

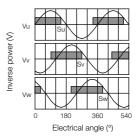
SGLC-D25 and -D32 Moving Coils

Servomotor Connector

Plug: 350779-1 Pins: 350561-3 or 350690-3 (No.1 to 3) 350654-1 or 350669-1 (No. 4) Tyco Electronics Japan G.K.

Mating Connector Cap: 350780-1 Socket: 350925-1 or 770673-1

• Polarity Sensor Connector


∘<u>....</u>∘

Pin connector: 17JE-23090-02 (D8C) From DDK Ltd.

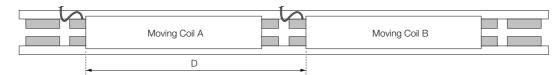
Mating Connector Socket connector: 17JE-13090-02 (D8C) Studs: 17L-002C or 17L-002C1

• Polarity Sensor Output Signal

The figure on the right shows the relationship between the Su, Sv, and Sw polarity sensor output signals and the inverse power of each motor phase Vu, Vv, and Vw when the Moving Coil moves in the direction indicated by the arrow in the dimensional drawings of the Moving Coil.

Specifications When Connecting More Than One Moving Coil

With a Linear Servomotor, you can connect more than one Moving Coil (i.e., connect more than one Moving Coil in parallel and drive them with one SERVOPACK). Observe the following precautions when you connect more than one Moving Coil.



The specifications for the Main Circuit Cable and Serial Converter Unit are different from the standard specifications. Contact your Yaskawa representative for details.

Mounting Position Precautions

◆ Series Arrangement

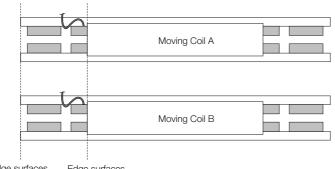
Position the Moving Coils as shown in the following figure so that the current phases of the Moving Coils are aligned.

			Maximum	Force [N]	Applicable	
Movin	ig Coil Mo	del	One Mov- ing Coil	Two Mov- ing Coils	SERVO- PACK Model ^{*1} SGD7S-	Dimension D [mm]
		253C	440	880	5R5A	$315 + 45 \times n^{*2}$
	60A	2000	(720)	(1440)	(120A)	$315 + 45 \times n^{*2}$
SGLGW-	UUA	365C	660	1320	120A	$450 + 45 \times n^{*2}$
SGLGW-		3030	(1080)	(2160)	(180A)	$450 + 45 \times n^{*2}$
	90A	370C	2200	4400	330A	$420 + 84 \times n^{*2}$
	90A	535C	3000	6000	330A	$588 + 84 \times n^{*2}$
SGLFW-	50A	380B	1200	2400	330A	$450 + 45 \times n^{*2}$
SGLI W-	1ZA	380B	2400	4800	470A	$450 + 45 \times n^{*2}$
	90A	380A	3360	6720	470A	$459 + 51 \times n^{*2}$
SGLFW2-	90A	560A	5040	10080	780A	663 + 51 × n ^{*2}
36LI W2-	1DA	380A	5040	10080	470A	$459 + 51 \times n^{*2}$
	IDA	560A	7560	15120	780A	$663 + 51 \times n^{*2}$
	40A	400B	2600	5200	330A	$405 + 45 \times n^{*2}$
SGLTW-	40A	600B	4000	8000	550A	$585 + 45 \times n^{*2}$
SGLIW-	80A	400B	5000	10000	550A	$405 + 45 \times n^{*2}$
	OUA	600B	7500	15000	780A	$585 + 45 \times n^{*2}$

*1. This is the model number of the applicable SERVOPACK when you connect two Moving Coils. You will need to obtain an estimate for the model numbers of applicable SERVOPACKs if you want to connect three or more Moving Coils. Contact your Yaskawa representative for details.

*2. n = Number of Moving Coils arranged in series

Note: 1. The entries in parentheses are the values and model numbers for combining with High-Force Magnetic Ways.

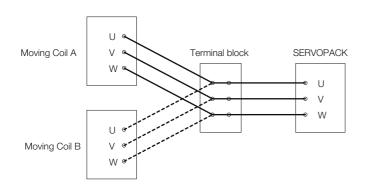

2. The dimensional tolerance for the separation between Moving Coils is ± 0.3 mm.

3. Consult your Yaskawa representative if you want to connect Linear Servomotors that are not listed in the table.

Specifications When Connecting More Than One Moving Coil

Parallel Arrangement

Mount the Moving Coils and Magnetic Ways within a tolerance of ± 0.3 mm at the edge surfaces of the Moving Coils and Magnetic Ways so that the current phases of the Moving Coil are aligned.


Edge surfaces Edge surfaces of Magnetic Ways of Moving Coils

Connection Procedure

Burnout Protection Circuit

Connect two Moving Coils in parallel as shown in the following figure. If you turn ON the power supply with only one Moving Coil connected, an overcurrent will flow and the Moving Coil may burn out. Always check the connections before you turn ON the power supply. When you connect more than one Moving Coil, we recommend that you use a CT (current transformer) and install a burnout protection circuit. Contact your Yaskawa representative for details.

SERVOPACKs

Σ -7S Single-axis Analog Voltage/Pulse Train Reference SERVOPACKs232
Σ -7S Single-axis MECHATROLINK-II Communications Reference SERVOPACKs240
Σ -7S Single-axis MECHATROLINK-III Communications Reference SERVOPACKs247
Σ -7W Two-axis MECHATROLINK-III Communications Reference SERVOPACKs254
SERVOPACK External Dimensions260

SERVOPACKs

$\Sigma\text{-7S}$ Single-axis Analog Voltage/Pulse Train Reference SERVOPACKs

lode	el De	esignation	S					
SG Σ-7 Se Σ-7S S		1st+2nd+3rd	A 4th digit	00 5th+6th digits	A 7th digit	00 8th+9th- digits		
1st+2n	d+3rd d	igits Maximum Applicable Motor Capacity	4th dig	git Voltage		8th+9		ware Options sification
Voltage	Code	Specification	Code	Specifica	tion	Code	Specification	Applicable
	R70*1	0.05 kW	А	200 VAC		None	Without options	All models
	R90*1	0.1 kW				001	Rack-mounted	SGD7S-R70A to
	1R6*1	0.2 kW	5th 16	th digits Inter	face*2			
	2R8*1	0.4 kW	Juite	our digits inter	lace -	002	Varnished	-200A
	3R8	0.5 kW	Code	Specifica	tion			
	5R5*1	0.75 kW		Analog voltage	/pulse			
Three-	7R6	1.0 kW	00	train reference				
phase,	120	1.5 kW						
200	180	2.0 kW	7th di	git Design Revi	sion Order			
VAC	200	3.0 kW	А					
	330	5.0 kW						
	470	6.0 kW						
	550	7.5 kW						
	590	11 kW						
	780	15 kW						

*1. You can use these models with either a single-phase or three-phase input.

*2. The same SERVOPACKs are used for both Rotary Servomotors and Linear Servomotors.

Ratings and Specifications

Ratings

◆ Three-phase, 200 VAC

Model SGD7S-		R70A	R90A	1R6A	2R8A	3R8A	5R5A	7R6A	120A	180A	200A	330A	
Maximum Applicable Motor Capacity [kW]		0.05	0.1	0.2	0.4	0.5	0.75	1.0	1.5	2.0	3.0	5.0	
Continuous	Output Curre	ent [Arms]	0.66	0.91	1.6	2.8	3.8	5.5	7.6	11.6	18.5	19.6	32.9
Instantaneous	Maximum Outpu	t Current [Arms]	2.1	3.2	5.9	9.3	11	16.9	17	28	42	56	84.0
Main Power Supply			200 VAC to 240 VAC, -15% to +10%, 50 Hz/60 Hz										
Circuit	Input Curre	nt [Arms]*	0.4	0.8	1.3	2.5	3.0	4.1	5.7	7.3	10	15	25
Control Pov	ver Supply			2	00 VAC	C to 24	0 VAC,	-15% 1	to +109	%, 50 F	Iz/60 ⊦	lz	I <u> </u>
Power Supply Capacity [kVA]*		0.2	0.3	0.5	1.0	1.3	1.6	2.3	3.2	4.0	5.9	7.5	
	Main Circuit P	ower Loss [W]	5.1	7.3	13.5	24.0	20.1	43.8	53.6	65.8	111.9	113.8	263.7
Power	Control Circuit Power Loss [W]		17	17	17	17	17	17	17	22	22	22	27
Loss*	Built-in Reger Resistor Pow		-	_	-	_	8	8	8	10	16	16	36.0
	Total Power	r Loss [W]	22.1	24.3	30.5	41.0	45.1	68.8	78.6	97.8	149.9	151.8	326.7
Regenera-	Built-In Regenera-	Resis- tance [Ω]	-	_	-	_	40	40	40	20	12	12	8
tive Resis-	tive Resistor	Capacity [W]	-	-	-	-	40	40	40	60	60	60	180
tor Minimum Allowable External Resistance [Ω]		40	40	40	40	40	40	40	20	12	12	8	
Overvoltage	e Category												

* This is the net value at the rated load.

	Model SGD7S-	470A	550A	590A	780A	
Maximum Appli	cable Motor Capa	city [kW]	6.0	7.5	11	15
Continuous Output Current [Arms]			46.9	54.7	58.6	78.0
Instantaneous Maximum Output Current [Arms]			110	130	140	170
Main Power Supply			200 VAC to	240 VAC, -15	5% to +10%, 5	0 Hz/60 Hz
Circuit	Input Current [A	vrms] ^{*1}	29	37	54	73
Control Power Supply			200 VAC to	240 VAC, -15	5% to +10%, 5	0 Hz/60 Hz
Power Supply C	Capacity [kVA] ^{*1}		10.7	14.6	21.7	29.6
	Main Circuit Po	wer Loss [W]	279.4	357.8	431.7	599.0
	Control Circuit Power Loss [W]		33	33	48	48
Power Loss ^{*1}	External Regen Unit Power Los		180 ^{*2}	180*3	350 ^{*3}	350*3
	Total Power Los	ss [W]	312.4	390.8	479.7	647.0
	External	Resistance $[\Omega]$	6.25 ^{*2}	3.13 ^{*3}	3.13 ^{*3}	3.13 ^{*3}
External Regenerative	Regenerative Resistor Unit	Concetty [M/]		1760 ^{*3}	1760*3	1760*3
Resistor UnitMinimum Allowable ExternalResistance [Ω]			5.8	2.9	2.9	2.9
Overvoltage Ca	tegory			I	II	

 $\ast 1.$ This is the net value at the rated load.

 $\ast 2.$ This value is for the optional JUSP-RA04-E Regenerative Resistor Unit.

*3. This value is for the optional JUSP-RA05-E Regenerative Resistor Unit.

Σ-7S Single-axis Analog Voltage/Pulse Train Reference SERVOPACKs

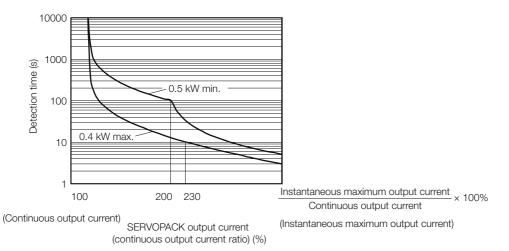
Single-phase, 200 VAC

	Model SGD7S-		R70A	R90A	1R6A	2R8A	5R5A
Maximum Appli	cable Motor Capac	ty [kW]	0.05	0.1	0.2	0.4	0.75
Continuous Out	put Current [Arms]		0.66	0.91	1.6	2.8	5.5
Instantaneous N	Aaximum Output Cu	ırrent [Arms]	2.1	3.2	5.9	9.3	16.9
Main Circuit	Main Circuit Power Supply			C to 240 VA	C, -15% to	+10%, 50 Hz	z/60 Hz
Main Circuit	Input Current [Arms] ^{*3}		0.8	1.6	2.4	5.0	8.7
Control Power Supply			200 VA	C to 240 VA	C, -15% to	+10%, 50 Hz	z/60 Hz
Power Supply C	Capacity [kVA]*3		0.2	0.3	0.6	1.2	1.9
	Main Circuit Power Loss [W]		5.1	7.3	13.5	24.0	43.8
	Control Circuit Power Loss [W]		17	17	17	17	17
Power Loss*3	Built-in Regenera Power Loss [W]	tive Resistor	_	_	_	_	8
	Total Power Loss	[W]	22.1	24.3	30.5	41.0	68.8
	Built-In Regen-	Resistance $[\Omega]$	-	-	-	-	40
Regenerative	erative Resistor	Capacity [W]	-	-	-	-	40
ResistorMinimum Allowable ExternalResistance [Ω]		40	40	40	40	40	
Overvoltage Ca	tegory			•		•	

*1. Single-phase, 200-VAC power supply input is available as a hardware option.

*2. The ratings are 220 VAC to 240 VAC, -15% to +10%, 50 Hz/60 Hz

*3. This is the net value at the rated load.


SERVOPACK Overload Protection Characteristics

The overload detection level is set for hot start conditions with a SERVOPACK surrounding air temperature of 55°C.

An overload alarm (A.710 or A.720) will occur if overload operation that exceeds the overload protection characteristics shown in the following diagram (i.e., operation on the right side of the applicable line) is performed.

The actual overload detection level will be the detection level of the connected SERVOPACK or Servomotor that has the lower overload protection characteristics.

In most cases, that will be the overload protection characteristics of the Servomotor.

Note: The above overload protection characteristics do not mean that you can perform continuous duty operation with an output of 100% or higher.

For a Yaskawa-specified combination of SERVOPACK and Servomotor, maintain the effective torque within the continuous duty zone of the torque-motor speed characteristic of the Servomotor.

Specifications

Control Method IGBT-based PWM control, sine wave current drive Feedback With Rotary Servomotor Sorial encoder; 20 bits or 24 bits (incremental encoder/absolute encoder) Yeedback With Linear Servomotor • Absolute linear encoder (The signal resolution depends on the absolute linear encoder) Surrounding Air Temperature • Absolute areance encoder (The signal resolution depends on the incremental linear encoder (The signal resolution depends on the incremental linear encoder) Surrounding Air Temperature • Our to to 55°C Surrounding Air Temperature • Our to to 55°C Surrounding Air Temperature • 20°C to 55°C Surrounding Air Humidity 95% relative humidity max. (with no freezing or condensation) Vibration Resistance 4.9 m/s² Shock Resistance 16.6 m/s² Protection Class Class Protection Class 2 Pollution Degree • Must be no corrosive or flammable gases. • Must be no exposure to water, oil, or chemicals. • Must be no exposure to water, oil, or chemicals. • Must be no exposure to water, oil, or chemicals. • Must be no exposure to water, oil, or chemicals. • Must be no exposure to water, oil, or chemicals. • Must be no exposure to water, oil, or chemicals. • Must be no exposure to water, oil, or chemicals. • Must be no exposure to water, oil, or chemicals. • Must be no exposereator water, oil, or chemicals. • Must be no exposure		Item			Specification		
Feedback With Hotary Servomotor accoder) 22 bits (absolute encoder) Feedback With Linear Servomotor 	Control Met	hod	IGBT-base	d PWM control	, sine wave current drive		
Feedback 		-	Serial enc	encoder)			
Surrounding Air Temperature With derating, usage is possible between 55°C and 60°C. Refer to the following section for derating specifications. (7) Derating Specifications (bage 239) Storage Temperature -20°C to 85°C Surrounding Air Humidity 95% relative humidity max. (with no freezing or condensation) Vibration Resistance 4.9 m/s ² Shock Resistance 19.6 m/s ² Shock Resistance 19.6 m/s ² Protection Class Class SERVOPACK Model: SGD75- (P10) Protection Class Class SERVOPACK Model: SGD75- (P10) Pollution Degree 2 Must be no corrosive or flammable gases. • Must be no corrosive or flammable gases. • Must be no cust, saits, or iron dust. Attitude 1,000 m or less. With derating, usage is possible between 1,000 m and 2,000 m. Refer to the following section for derating specifications. (7) Derating Specifications (bage 239) Others UL 61800-5-1, EN 50178, CSA C22.2 No.14, EN 61800-5-1, EN 55011 group 1 class A, EN 61000-6-2, EN 61000-6-4, EN 61800-3, IEC 61508-1 to 4, IEC 61800-5-2, IEC 62061, ISO 13849-1, and IEC 61326-3-1 Mounting Speed Control Range 1.5000 (At the rated torque, the lower limit of the speed control range must not cause the ServOPACK Model: SGD75- Base-mounted RT0A, R90A, 1R6A, 2R8A, 3R8A, 5R5A, 7R6A, 120A, 180A, 200A Perfor- mance Speed Control Range <td>Feedback</td> <td></td> <td>absolute • Increment</td> <td>linear encoder linear encoder. ntal linear encod</td> <td>(The signal resolution depends on the) der (The signal resolution depends on the</td>	Feedback		absolute • Increment	linear encoder linear encoder. ntal linear encod	(The signal resolution depends on the) der (The signal resolution depends on the		
Surrounding Air Humidity 95% relative humidity max. (with no freezing or condensation) Storage Humidity 95% relative humidity max. (with no freezing or condensation) Vibration Resistance 19.6 m/s ² Shock Resistance 19.6 m/s ² Protection Class Class SERVOPACK Model: SGD7S- IP20 Protection Class IP20 R70A, R90A, 1R6A, 2R8A, 3R8A, 5R5A, 7R6A, 120A Pollution Degree 2 Must be no corrosive or flammable gases. Must be no exposure to water, oil, or chemicals. Must be no dust, salts, or iron dust. Attitude 1,000 m or less. With derating, usage is possible between 1,000 m and 2,000 m. Refer to the following section for derating specifications. <i>Great Derating Specifications</i> (page 239) Do not use the SERVOPACK in the following locations: Locations subject to static electricity noise, strong electromagnetic/magnetic fields, or radioactivity Applicable Standards UL 61800-5-1, EN 50178, CSA C22.2 No.14, EN 61800-5-1, EN 55011 group 1 class A, EN 61000-6-4, EN 61800-5-1, EN 61326-3-1 Mounting Mounting Mounting Perfor- mance Speed Control Range 1:5000 (At the rated torque, the lower limit of the speed control range must not cause the Servomotor to stop.) Perfor- mance Speed Control Range <td></td> <td></td> <td>With derat Refer to th</td> <td>ing, usage is po le following sect</td> <td>tion for derating specifications.</td>			With derat Refer to th	ing, usage is po le following sect	tion for derating specifications.		
Humidity S95% relative infinitity max. (with no freezing or condensation) Storage Humidity 95% relative numidity max. (with no freezing or condensation) Vibration Resistance 4.9 m/s ² Shock Resistance 19.6 m/s ² Shock Resistance 19.6 m/s ² Protection Class 1220 R70A, R90A, 1R6A, 2R8A, 3R8A, SR5A, 7R6A, 120A IP10 180A, 200A, 330A, 470A, 550A, 590A, 780A Pollution Degree * Must be no corrosive or flarmable gases. • Must be no dust, salts, or iron dust. 1,000 m or less. * Must be no dust, salts, or iron dust. 1,000 m or less. * Ger to the following section for derating specifications. • Ger Derating Specifications (page 239) Do not use the SERVOPACK in the following locations: Locations subject to static electricity noise, strong electromagnetic/magnetic fields, or radioactivity Applicable Standards UL 61800-5-1, EN 50178, CSA C22.2 No.14, EN 61800-5-1, EN 50171 group 1 class A, EN 61000-6-2, EN 61000-6-4, EN 61800-3, IEC 61508-1 to 4, IEC 61800-5-2, IEC 62061, ISO 13849-1, and IEC 61326-3-1 Mounting Speed Control Range Mounting Speed Control Range Performance 1:5000 (At the rated torque, the lower limit of the speed control range must not cause the Servomotor to stop.) <		Storage Temperature	-20°C to 8	5°C			
Vibration Resistance 4.9 m/s ² Shock Resistance 19.6 m/s ² Shock Resistance 19.6 m/s ² Protection Class IP20 R70A, R90A, 1R6A, 2R8A, 3R8A, 5R5A, 7R6A, 120A IP10 180A, 200A, 330A, 470A, 550A, 590A, 780A IP10 Pollution Degree * Must be no corrosive or flammable gases. Must be no corrosive or starmable gases. * Must be no dust, salts, or iron dust. 1,000 m or less. * With derating, usage is possible between 1,000 m and 2,000 m. Refer to the following section for derating specifications. * * Others Do not use the SERVOPACK in the following locations: Locations subject to static electricity noise, strong electromagnetic/magnetic fields, or radioactivity Applicable Standards UL 61800-5-1, EN 50178, CSA C22.2 No.14, EN 61800-5-1, EN 55011 group 1 class A, EN 61000-6-2, EN 61000-6-4, EN 61800-3, IEC 61506-10 4, IEC 61800-5-2, IEC 60201, ISO 13849-1, and IEC 61326-3-1 Mounting Mounting Mounting Seed Control Range Refer to the, IEC 61800-5-2, IEC 62061, ISO 13849-1, and IEC 61326-3-1 Rack-mounted R70A, R90A, 1R6A, 2R8A, 3R8A, 5R5A, 7R6A, 120A Mounting Speed Control Range 1:5000 (At the rated torque, the lower limit of the speed control		0	95% relati	ve humidity max	x. (with no freezing or condensation)		
Environ- mental Conditions Shock Resistance 19.6 m/s ² Protection Class IP20 R70A, R90A, 1R6A, 2R8A, 3R8A, 5R5A, 7R6A, 120A IP10 180A, 200A, 330A, 470A, 550A, 590A, 780A Pollution Degree IP10 180A, 200A, 330A, 470A, 550A, 590A, 780A 200 Pollution Degree Must be no corrosive or flammable gases. • Must be no exposure to water, oil, or chemicals. • Must be no dust, salts, or iron dust. 1,000 m or less. • Must be no dust, salts, or iron dust. Altitude 1,000 m or less. • With derating, usage is possible between 1,000 m and 2,000 m. Refer to the following section for derating specifications. • <i>Perting Specifications</i> (page 239) Do not use the SERVOPACK in the following locations: Locations subject to static electricity noise, strong electromagnetic/magnetic fields, or radioactivity Applicable Standards UL 61800-5-1, EN 50178, CSA C22.2 No.14, EN 61800-5-1, EN 55011 group 1 class A, EN 61000-6-2, EN 61000-6-4, EN 61800-3, IEC 61508-1 to 4, IEC 61800-5-2, IEC 62061, ISO 13849-1, and IEC 61326-3-1 Mounting Secondards Mounting Secondards Speed Control Range 1:5000 (At the rated torque, the lower limit of the speed control range must not cause the Servomotor to stop.) Perfor- mance Coefficient of Speed Fluctuation ¹ 1:5000 (At the rated torque, the lower limit of the speed control range must not cause the Servomotor to stop.		Storage Humidity	95% relati	ve humidity max	k. (with no freezing or condensation)		
Environ- mental Conditions Class SERVOPACK Model: SGD7S- IP20 Protection Class IP20 R70A, R90A, 1R6A, 2R8A, 3R8A, 5R5A, 7R6A, 120A IP10 180A, 200A, 330A, 470A, 550A, 590A, 780A Pollution Degree * Must be no corrosive or flammable gases. • Must be no exposure to water, oil, or chemicals. • Must be no dust, salts, or iron dust. 1,000 m or less. • Must be no dust, salts, or iron dust. Attitude 1,000 m or less. • Must be no curso is possible between 1,000 m and 2,000 m. Refer to the following section for derating specifications. • Do not use the SERVOPACK in the following locations: Locations subject to static electricity noise, strong electromagnetic/magnetic fields, or radioactivity Applicable Standards UL 61800-51, EN 50178, CSA C22.2 No.14, EN 61800-51, EN 55011 group 1 class A, EN 61000-6-2, EN 6100-6-4, EN 61800-3, IEC 61508-1 to 4, IEC 61808-5-2, IEC 62061, ISO 13849-1, and IEC 61326-3-1 Mounting ServOPACK Model: SGD7S- Base-mounted R70A, R90A, 1R6A, 2R8A, 3R8A, 5R5A, 7R6A, 120A, 180A, 200A Mounting Speed Control Range 1:5000 (At the rated torque, the lower limit of the speed control range must not cause the Servomotor to stop.) Perfor- mance Coefficient of Speed Fluctuation*1 1:000 for fated speed max. (for a load fluctuation of 0% to 100%) 0% of rated speed max. (for a load fluctuation of 0% to 100%) 0% of rated speed max. (for a load fluctuation of 25°C ±25°C)		Vibration Resistance	4.9 m/s ²				
Protection Class IP20 R70A, R90A, 1R6A, 2R8A, 3R8A, 5R5A, 7R6A, 120A Pollution Degree IP10 180A, 200A, 330A, 470A, 550A, 590A, 780A Pollution Degree * Must be no corrosive or flammable gases. • Must be no exposure to water, oil, or chemicals. • Must be no dust, salts, or iron dust. Attitude 1,000 m or less. With derating, usage is possible between 1,000 m and 2,000 m. Refer to the following section for derating specifications. @ Derating Specifications (page 239) Others Do not use the SERVOPACK in the following locations: Locations subject to static electricity noise, strong electromagnetic/magnetic fields, or radioactivity Applicable Standards UL 61800-5-1, EN 50178, CSA C22.2 No.14, EN 61800-5-1, EN 55011 group 1 class A, EN 61000-6-2, EN 61000-6-4, EN 61800-3, IEC 61508-1 to 4, IEC 61800-5-2, IEC 62061, ISO 13849-1, and IEC 61326-3-1 Mounting SERVOPACK Model: SGD7S- Base-mounted All Models Rack-mounted R70A, R90A, 1R6A, 2R8A, 3R8A, 5R5A, 7R6A, 120A, 180A, 200A Seed Control Range Perfor- mance Speed Control Range 1:5000 (At the rated torque, the lower limit of the speed control range must not cause the Servomotor to stop.) Coefficient of Speed Fluctuation*1 1:5001 (At the rated torque, the lower limit of the speed control range must not cause the Servomotor to stop.) 40.01% of rated speed max. (for a load fluctuation of 0% to 100%) 0% of rated speed max. (for a tem		Shock Resistance	19.6 m/s ²				
Protection Class IP20 R70A, R90A, 1R6A, 2R8A, 3R8A, 5R5A, 7R6A, 120A IP10 180A, 200A, 330A, 470A, 550A, 590A, 780A IP10 180A, 200A, 330A, 470A, 550A, 590A, 780A IP10 180A, 200A, 330A, 470A, 550A, 590A, 780A IP10 180A, 200A, 330A, 470A, 550A, 590A, 780A IP10 180A, 200A, 330A, 470A, 550A, 590A, 780A IP10 180A, 200A, 330A, 470A, 550A, 590A, 780A IP10 180A, 200A, 330A, 470A, 550A, 590A, 780A IP10 180A, 200A, 330A, 470A, 550A, 590A, 780A IP10 180A, 200A, 330A, 470A, 550A, 590A, 780A IP10 180A, 200A, 330A, 470A, 550A, 590A, 780A IP10 180D -501, S0A, 590A, 180A, 200B IP10 IP10 180A, 200A, 330A, 470A, 550A, 590A, 780A IP10 1800 -501 Section dist, salts, or iron dust. IP10 IP100 IP10 IP10							
Conditions Instrument of the second of the sec		Protection Class					
Pollution Degree 2 Pollution Degree Must be no corrosive or flammable gases. Must be no dust, salts, or iron dust. 1,000 m or less. Altitude 1,000 m or less. With derating, usage is possible between 1,000 m and 2,000 m. Refer to the following section for derating specifications. Image: Derating Specifications (page 239) Others Do not use the SERVOPACK in the following locations: Locations subject to static electricity noise, strong electromagnetic/magnetic fields, or radioactivity Applicable Standards UL 61800-5-1, EN 50178, CSA C22.2 No.14, EN 61800-5-1, EN 55011 group 1 class A, EN 61000-6-2, EN 61000-6-4, EN 61800-3, IEC 61508-1 to 4, IEC 61800-5-2, IEC 62061, ISO 13849-1, and IEC 61326-3-1 Mounting Seven control Range Mounting Speed Control Range Coefficient of Speed Fluctuation*1 1:5000 (At the rated torque, the lower limit of the speed control range must not cause the Servomotor to stop.) 40.01% of rated speed max. (for a load fluctuation of 0% to 100%) 0% of rated speed max. (for a voltage fluctuation of ±10%) 40.1% of rated speed max. (for a temperature fluctuation of 25°C ±25°C) 11%		FIDLECLION CIASS					
Pollution Degree • Must be no corrosive or flammable gases. • Must be no exposure to water, oil, or chemicals. • Must be no dust, salts, or iron dust. Altitude 1,000 m or less. • Must be no dust, salts, or iron dust. Altitude 1,000 m or less. • Derating specifications (page 239) Others Do not use the SERVOPACK in the following locations: Locations subject to static electricity noise, strong electromagnetic/magnetic fields, or radioactivity Applicable Standards UL 61800-5-1, EN 50178, CSA C22.2 No.14, EN 61800-5-1, EN 55011 group 1 class A, EN 61000-6-2, EN 61000-6-4, EN 61800-3, IEC 61508-1 to 4, IEC 61800-5-2, IEC 62061, ISO 13849-1, and IEC 61326-3-1 Mounting ServOPACK Model: SGD7S- Base-mounted All Models Rack-mounted R70A, R90A, 1R6A, 2R8A, 3R8A, 5R5A, 7R6A, 120A, 180A, 200A Perfor- mance Coefficient of Speed Fluctuation*1 Perfor- mance Coefficient of Speed Fluctuation*1 Torque Control Preci- sion (Repeatability) ±1%				100A, 200A, C	550A, 470A, 550A, 590A, 780A		
Altitude With derating, usage is possible between 1,000 m and 2,000 m. Refer to the following section for derating specifications. Image: Derating Specifications (page 239) Others Do not use the SERVOPACK in the following locations: Locations subject to static electricity noise, strong electromagnetic/magnetic fields, or radioactivity Applicable Standards UL 61800-5-1, EN 50178, CSA C22.2 No.14, EN 61800-5-1, EN 55011 group 1 class A, EN 61000-6-2, EN 61000-6-4, EN 61800-3, IEC 61508-1 to 4, IEC 61800-5-2, IEC 62061, ISO 13849-1, and IEC 61326-3-1 Mounting SERVOPACK Model: SGD7S- Base-mounted Base-mounted All Models Rack-mounted R70A, R90A, 1R6A, 2R8A, 3R8A, 5R5A, 7R6A, 120A, 180A, 200A Perfor- mance Speed Control Range 1:5000 (At the rated torque, the lower limit of the speed control range must not cause the Servomotor to stop.) +U0.1% of rated speed max. (for a load fluctuation of 0% to 100%) 0% of rated speed max. (for a voltage fluctuation of ±10%) +U0.1% of rated speed max. (for a temperature fluctuation of 25°C ±25°C)		Pollution Degree	 Must be Must be 	 Must be no corrosive or flammable gases. Must be no exposure to water, oil, or chemicals. 			
Others Do not use the SERVOPACK in the following locations: Locations subject to static electricity noise, strong electromagnetic/magnetic fields, or radioactivity Applicable Standards UL 61800-5-1, EN 50178, CSA C22.2 No.14, EN 61800-5-1, EN 55011 group 1 class A, EN 61000-6-2, EN 61000-6-4, EN 61800-3, IEC 61508-1 to 4, IEC 61800-5-2, IEC 62061, ISO 13849-1, and IEC 61326-3-1 Mounting Mounting SERVOPACK Model: SGD7S- Base-mounted Rack-mounted R70A, R90A, 1R6A, 2R8A, 3R8A, 5R5A, 7R6A, 120A, 180A, 200A Rack-mounted I:5000 (At the rated torque, the lower limit of the speed control range must not cause the Servomotor to stop.) ±0.01% of rated speed max. (for a load fluctuation of 0% to 100%) 0% of rated speed max. (for a voltage fluctuation of ±10%) ±0.1% of rated speed max. (for a temperature fluctuation of 25°C ±25°C) ±1%		Altitude	With derat Refer to th	ing, usage is po le following sect	tion for derating specifications.		
Applicable Standards 55011 group 1 class A, EN 61000-6-2, EN 61000-6-4, EN 61800-3, IEC 61508-1 to 4, IEC 61800-5-2, IEC 62061, ISO 13849-1, and IEC 61326-3-1 Mounting Nounting SERVOPACK Model: SGD7S-Base-mounted Base-mounted All Models Rack-mounted R70A, R90A, 1R6A, 2R8A, 3R8A, 5R5A, 7R6A, 120A, 180A, 200A Rack-mounted R70A, 120A, 180A, 200A Performance Speed Control Range ±0.01% of rated speed max. (for a load fluctuation of 0% to 100%) O% of rated speed max. (for a voltage fluctuation of ±10%) ±0.1% of rated speed max. (for a temperature fluctuation of 25°C ±25°C)		Others	Do not use subject to	e the SERVOPA static electricity	CK in the following locations: Locations		
Mounting Base-mounted All Models Base-mounted R70A, R90A, 1R6A, 2R8A, 3R8A, 5R5A, 7R6A, 120A, 180A, 200A Rack-mounted 1:5000 (At the rated torque, the lower limit of the speed control range must not cause the Servomotor to stop.) Every performance Coefficient of Speed Fluctuation*I Every performance ±0.01% of rated speed max. (for a load fluctuation of 0% to 100%) 0% of rated speed max. (for a voltage fluctuation of ±10%) ±0.1% of rated speed max. (for a temperature fluctuation of 25°C ±25°C) Torque Control Precision (Repeatability) ±1%	Applicable §	Standards	55011 gro IEC 61508	up 1 class A, E 8-1 to 4, IEC 618	N 61000-6-2, EN 61000-6-4, EN 61800-3,		
Mounting Rack-mounted R70A, R90A, 1R6A, 2R8A, 3R8A, 5R5A, 7R6A, 120A, 180A, 200A Performance Speed Control Range 1:5000 (At the rated torque, the lower limit of the speed control range must not cause the Servomotor to stop.) Écoefficient of Speed 10.01% of rated speed max. (for a load fluctuation of 0% to 100%) O% of rated speed max. (for a voltage fluctuation of ±10%) ±0.1% of rated speed max. (for a temperature fluctuation of 25°C ±25°C) Torque Control Precision (Repeatability) ±1%			N	ounting	SERVOPACK Model: SGD7S-		
Performance Speed Control Range 1:5000 (At the rated torque, the lower limit of the speed control range must not cause the Servomotor to stop.) ±0.01% of rated speed max. (for a load fluctuation of 0% to 100%) 0% of rated speed max. (for a voltage fluctuation of ±10%) ±0.1% of rated speed max. (for a temperature fluctuation of 25°C ±25°C) Torque Control Precision (Repeatability) ±1%	Manuatinan		Base-mo	ounted	All Models		
Performance Speed Control Range must not cause the Servomotor to stop.) Performance Coefficient of Speed ±0.01% of rated speed max. (for a load fluctuation of 0% to 100%) 0% of rated speed max. (for a voltage fluctuation of ±10%) ±0.1% of rated speed max. (for a temperature fluctuation of 25°C ±25°C) ±1%	wounting		Rack-mo	ounted			
Performance Coefficient of Speed 0% of rated speed max. (for a voltage fluctuation of ±10%) ±0.1% of rated speed max. (for a temperature fluctuation of 25°C) Torque Control Precision (Repeatability) ±1%		Speed Control Range					
Performance Fluctuation*1 ±0.1% of rated speed max. (for a temperature fluctuation of 25°C ±25°C) Torque Control Precision (Repeatability) ±1%			±0.01% of	rated speed m	ax. (for a load fluctuation of 0% to 100%)		
manceFluctuation 1±0.1% of rated speed max. (for a temperature fluctuation of 25°C ±25°C)Torque Control Precision (Repeatability)±1%	Perfor-						
sion (Repeatability)				rated speed ma	x. (for a temperature fluctuation of 25°C		
Soft Start Time Setting 0 s to 10 s (Can be set separately for acceleration and deceleration.)		sion (Repeatability)					
		Soft Start Time Setting	0 s to 10 s	s (Can be set se	parately for acceleration and deceleration.)		

SERVOPACKs

Continued from previous page.

	Item		Specification
	Encoder D Output	vided Pulse	Phase A, phase B, phase C: Line-driver output Number of divided output pulses: Any setting is allowed.
	Linear Serv Overheat F Signal Inpu	Protection	Number of input points: 1 Input voltage range: 0 V to +5 V
		Fixed Input	Allowable voltage range: 5 VDC ±5% Number of input points: 1 Absolute Data Request (SEN)
			Allowable voltage range: 24 VDC ±20% Number of input points: 7
I/O Signals	Sequence Input Signals	Input Signals That Can Be Allocated	 Input method: Sink inputs or source inputs Input Signals: Servo ON (/S-ON) Proportional Control (/P-CON) Forward Drive Prohibit (P-OT) and Reverse Drive Prohibit (N-OT) Alarm Reset (/ALM-RST) Forward External Torque Limit (/P-CL) and Reverse External Torque Limit (/N-CL) Motor Direction (/SPD-D) Internal Set Speed Selection (/SPD-A and /SPD-B) Control Selection (/C-SEL) Zero Clamping (/ZCLAMP) Reference Pulse Inhibit (/INHIBIT) Polarity Detection (/P-DET) Gain Selection (/G-SEL) Reference Pulse Input Multiplication Switch (/PSEL) Absolute Data Request (SEN) A signal can be allocated and the positive and negative logic can be changed.
		Fixed Output	Allowable voltage range: 5 VDC to 30 VDC Number of output points: 1 Output signal: Servo Alarm (ALM)
	Sequence Output Signals	Output Signals That Can Be Allocated	Allowable voltage range: 5 VDC to 30 VDC Number of output points: 6 (A photocoupler output (isolated) is used for three of the outputs.) (An open-collector output (non-isolated) is used for the other three outputs.) Output Signals: • Positioning Completion (/COIN) • Speed Coincidence Detection (/V-CMP) • Rotation Detection (/TGON) • Servo Ready Output (/S-RDY) • Torque Limit Detection (/CLT) • Speed Limit Detection (/VLT) • Brake (/BK) • Warning Output (/WARN) • Near Output (/NEAR) • Reference Pulse Input Multiplication Switching (/PSELA) • Alarm Code (ALO1, ALO2, and ALO3) A signal can be allocated and the positive and negative logic can be changed.

SERVOPACKs Σ-7S Single-axis Analog Voltage/Pulse Train Reference SERVOPACKs

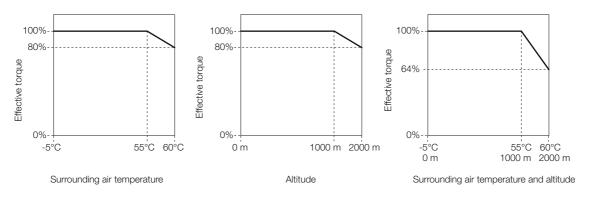
Continued from previous page.

RS-422A Interfaces Digital Operator (JUSP-OP05A-1-E) and personal computer (with maWin+) RS-422A 1:N Communications Up to N = 15 stations possible for RS-422A port Communications CN3) Axis Address Setting Set with parameters.
Communi- nicationsCommuni- cationsUp to N = 15 stations possible for RS-422A portCommuni- cations(CN3)Axis AddressAddressSet with parameters.
cations Address Set with parameters.
USB Interface Personal computer (with SigmaWin+)
Commu- nicationsCommuni- cationsConforms to USB2.0 standard (12 Mbps).(CN7)Standard
Displays/Indicators CHARGE indicator and five-digit seven-segment display
Panel Operator Four push switches
Number of points: 2 Output voltage range: ±10 VDC (effective linearity range: ±8 V) Resolution: 16 bits Accuracy: ±20 mV (Typ) Maximum output current: ±10 mA Settling time (±1%): 1.2 ms (Typ)
Dynamic Brake (DB)Activated when a servo alarm or overtravel (OT) occurs, or when the power supply to the main circuit or servo is OFF.
Regenerative Processing Built-in (An external resistor must be connected to the SGD7S-47 to -780A.) Image: Built-In Regenerative Resistor (page 333)
Overtravel (OT) PreventionStopping with dynamic brake, deceleration to a stop, or coasting stop for the P-OT (Forward Drive Prohibit) or N-OT (Reverse Drive Prohibit) signal
Protective Functions Overcurrent, overvoltage, low voltage, overload, regeneration error etc.
Utility Functions Gain adjustment, alarm history, jogging, origin search, etc.
Inputs /HWBB1 and /HWBB2: Base block signals for Power Modules
Safety Output EDM1: Monitors the status of built-in safety circuit (fixed output).
Applicable Standards ^{*2} ISO13849-1 PLe (Category 3) and IEC61508 SIL3
Option Module Fully-Closed Module

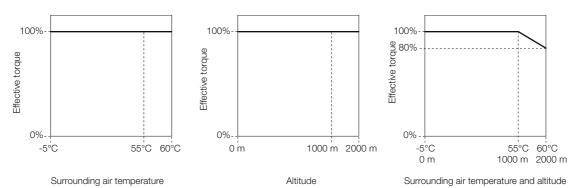
Continued from previous page.

		lte	em		Specification
		Soft	Start -	Time Setting	0 s to 10 s (Can be set separately for acceleration and deceleration.)
				Reference Voltage	 Maximum input voltage: ±12 V (forward motor rotation for positive reference). 6 VDC at rated speed (default setting). Input gain setting can be changed.
		Input Signa		Input Impedance	Αρρrox. 14 kΩ
	Speed Control			Circuit Time Constant	30 µs
	Sp	Interi Set	nal	Rotation Direction Selection	With Proportional Control signal
		Set Speed Control		Speed Selection	With Forward/Reverse External Torque Limit signals (speed 1 to 3 selection). Servomotor stops or another control method is used when both signals are OFF.
Controls		Feedforward Compensation			0% to 100%
Co		Output Signal F ing Completed Setting			0 to 1,073,741,824 reference units
	0			Reference Pulse Form	One of the following is selected: Sign + pulse train, CW + CCW pulse trains, and two-phase pulse trains with 90° phase differential
	ont		es	Input Form	Line driver or open collector
	Position Control	Input Signals	Reference pulses	Maximum Input Frequency	 Line Driver Sign + pulse train or CW + CCW pulse trains: 4 Mpps Two-phase pulse trains with 90° phase differential: 1 Mpps Open Collector Sign + pulse train or CW + CCW pulse trains: 200 kpps Two-phase pulse trains with 90° phase differential: 200 kpps
				Input Multiplication Switching	1 to 100 times
			Clea	r Signal	Position deviation clear Line driver or open collector
slo	ontrol	lpp://	Reference Voltage		 Maximum input voltage: ±12 V (forward torque output for positive reference). 3 VDC at rated torque (default setting). Input gain setting can be changed.
Controls	Torque Control	Input Signa		Input Impedance	Αρρrox. 14 kΩ
	Tor			Circuit Time Constant	16 μs

*1. The coefficient of speed fluctuation for load fluctuation is defined as follows:

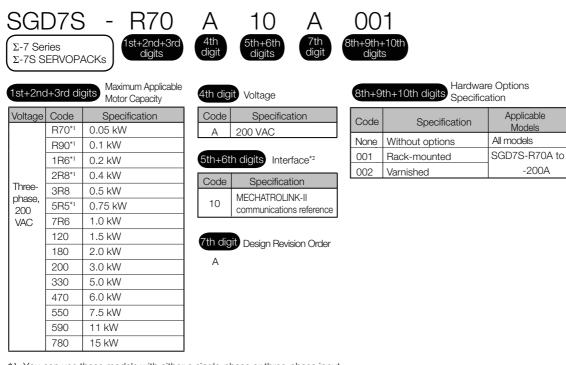

Coefficient of speed fluctuation = <u>No-load motor speed - Total-load motor speed</u> × 100% Rated motor speed

*2. Always perform risk assessment for the system and confirm that the safety requirements are met.


Derating Specifications

If you use the SERVOPACK at a surrounding air temperature of 55°C to 60°C or at an altitude of 1,000 m to 2,000 m, you must apply the derating rates given in the following graphs.

◆ SGD7S-R70A, -R90A, -1R6A, and -2R8A


SGD7S-3R8A, -5R5A, -7R6A, -120A, -180A, -200A, -330A, -470A, -550A, -590A, and -780A

SERVOPACKs

Σ -7S Single-axis MECHATROLINK-II Communications Reference SERVOPACKs

Model Designations

*1. You can use these models with either a single-phase or three-phase input.

*2. The same SERVOPACKs are used for both Rotary Servomotors and Linear Servomotors.

Ratings and Specifications

Ratings

◆ Three-phase, 200 VAC

Model SGD7S-			R70A	R90A	1R6A	2R8A	3R8A	5R5A	7R6A	120A	180A	200A	330A
Maximum Ap	plicable Motor	Capacity [kW]	0.05	0.1	0.2	0.4	0.5	0.75	1.0	1.5	2.0	3.0	5.0
Continuous	Output Curr	ent [Arms]	0.66	0.91	1.6	2.8	3.8	5.5	7.6	11.6	18.5	19.6	32.9
Instantaneous	Maximum Output	Current [Arms]	2.1	3.2	5.9	9.3	11	16.9	17	28	42	56	84.0
Main	Power Sup	ply		2	00 VAC	C to 24	O VAC,	-15% 1	io +10%	%, 50 ⊦	Iz/60 H	z	
Circuit	Input Curre	nt [Arms]*	0.4	0.8	1.3	2.5	3.0	4.1	5.7	7.3	10	15	25
Control Pov	ver Supply			2	00 VAC	C to 24	D VAC,	-15% 1	to +10%	%, 50 H	Iz/60 H	z	
Power Sup	oly Capacity	[kVA]*	0.2	0.3	0.5	1.0	1.3	1.6	2.3	3.2	4.0	5.9	7.5
	Main Circuit Power Loss [W]		5.1	7.3	13.5	24.0	20.1	43.8	53.6	65.8	111.9	113.8	263.7
Power	Control Circuit Power Loss [W]		17	17	17	17	17	17	17	22	22	22	27
Loss*	Built-in Regenerative Resistor Power Loss [W]		-	-	-	-	8	8	8	10	16	16	36.0
	Total Power	r Loss [W]	22.1	24.3	30.5	41.0	45.1	68.8	78.6	97.8	149.9	151.8	326.7
Regenera-	Built-In Regener-	Resis- tance $[\Omega]$	-	-	-	Ι	40	40	40	20	12	12	8
tive Resis-	ative Resistor	Capacity [W]	-	_	-	-	40	40	40	60	60	60	180
LUI	Minimum Allowable External Resistance $[\Omega]$		40	40	40	40	40	40	40	20	12	12	8
Overvoltage	e Category												

* This is the net value at the rated load.

	Model SGD7S-		470A	550A	590A	780A
Maximum Appli	cable Motor Capa	city [kW]	6.0	7.5	11	15
Continuous Out	put Current [Arms	;]	46.9	54.7	58.6	78.0
Instantaneous N	Aaximum Output (Current [Arms]	110	130	140	170
Main	Power Supply		200 VAC to	240 VAC, -15	5% to +10%, 5	0 Hz/60 Hz
Circuit	Input Current [A	rms] ^{*1}	29	37	54	73
Control Power S	Supply		200 VAC to	240 VAC, -15	5% to +10%, 5	0 Hz/60 Hz
Power Supply C	Capacity [kVA]] ^{*1}		10.7	14.6	21.7	29.6
	Main Circuit Po	wer Loss [W]	279.4	357.8	431.7	599.0
	Control Circuit I	Power Loss [W]	33	33	48	48
Power Loss]*1	External Regen Unit Power Los		180*2	180*3	350 ^{*3}	350 ^{*3}
	Total Power Los	ss [W]	312.4	390.8	479.7	647.0
	External	Resistance $[\Omega]$	6.25 ^{*2}	3.13 ^{*3}	3.13 ^{*3}	3.13 ^{*3}
External Regenerative	Regenerative Resistor Unit	Capacity [W]	880 ^{*2}	1760*3	1760 ^{*3}	1760 ^{*3}
Resistor Unit	Minimum Allowa Resistance [Ω]	able External	5.8	2.9	2.9	2.9
Overvoltage Cat	tegory					

*1. This is the net value at the rated load.

*2. This value is for the optional JUSP-RA04-E Regenerative Resistor Unit.

*3. This value is for the optional JUSP-RA05-E Regenerative Resistor Unit.

Σ-7S Single-axis MECHATROLINK-II Communications Reference SERVOPACKs

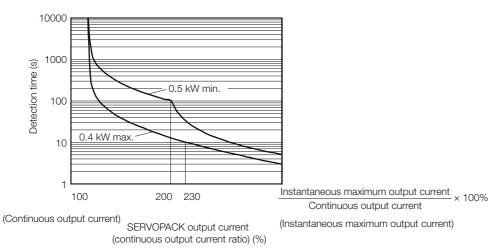
Single-phase, 200 VAC

	Model SGD7S-		R70A	R90A	1R6A	2R8A	5R5A	
Maximum App	licable Motor Ca	pacity [kW]	0.05	0.1	0.2	0.4	0.75	
Continuous Ou	utput Current [Ar	ms]	0.66	0.91	1.6	2.8	5.5	
Instantaneous [Arms]	Maximum Outpu	ut Current	2.1	3.2	5.9	9.3	16.9	
Main Circulit	Power Supply		200 VA	AC to 240 VA	C, -15% to -	+10%, 50 Hz	z/60 Hz	
Main Circuit	Input Current [Arms] ^{*3}	0.8	1.6	2.4	5.0	8.7	
Control Power	Supply		200 VA	AC to 240 VA	C, -15% to -	+10%, 50 Hz	z/60 Hz	
Power Supply	0.2	0.3	0.6	1.2	1.9			
	Main Circuit Po	ower Loss [W]	5.1	7.3	13.5	24.0	43.8	
D	Control Circuit [W]	Power Loss	17	17	17	17	17	
Power Loss*3	Built-in Regent tor Power Loss		_	-	_	_	8	
	Total Power Lo	oss [W]	22.1	24.3	30.5	41.0	68.8	
Demonstra	Built-In Regenerative	Resistance $[\Omega]$	-	-	-	-	40	
Regenerative Resistor	Resistor	Capacity [W]	-	-	-	-	40	
10010101	Minimum Allov Resistance [Ω]		40	40	40	40	40	
Overvoltage C	ategory							

*1. Single-phase, 200-VAC power supply input is available as a hardware option.

*2. The ratings are 220 VAC to 240 VAC, +10% to -15%, 50 Hz/60 Hz

*3. This is the net value at the rated load.


SERVOPACK Overload Protection Characteristics

The overload detection level is set for hot start conditions with a SERVOPACK surrounding air temperature of 55°C.

An overload alarm (A.710 or A.720) will occur if overload operation that exceeds the overload protection characteristics shown in the following diagram (i.e., operation on the right side of the applicable line) is performed.

The actual overload detection level will be the detection level of the connected SERVOPACK or Servomotor that has the lower overload protection characteristics.

In most cases, that will be the overload protection characteristics of the Servomotor.

Note: The above overload protection characteristics do not mean that you can perform continuous duty operation with an output of 100% or higher.

For a Yaskawa-specified combination of SERVOPACK and Servomotor, maintain the effective torque within the continuous duty zone of the torque-motor speed characteristic of the Servomotor.

Specifications

	Item		Specification				
Control Met	hod	IGBT-based PWM of	ontrol, sine wave current drive				
	With Rotary Servomotor	enc	its or 24 bits (incremental encoder/absolute oder) bits (absolute encoder)				
Feedback	With Linear Servomotor	 Absolute linear en absolute linear en Incremental linear 	coder (The signal resolution depends on the				
	Surrounding Air Temperature		e is possible between 55°C and 60°C. g section for derating specifications. ations (page 246)				
	Storage Temperature	-20°C to 85°C					
	Surrounding Air Humidity	95% relative humid	ty max. (with no freezing or condensation)				
	Storage Humidity	95% relative humid	ty max. (with no freezing or condensation)				
	Vibration Resistance	4.9 m/s ²					
	Shock Resistance	19.6 m/s ²					
			SERVOPACK Model: SGD7S-				
Environ- mental	Protection Class	Class IP20 R70A, F	190A, 1R6A, 2R8A, 3R8A, 5R5A, 7R6A, 120A				
Conditions			00A, 330A, 470A, 550A, 590A, 780A				
			00A, 000A, 470A, 000A, 090A, 700A				
	Pollution Degree		ive or flammable gases. ure to water, oil, or chemicals. salts, or iron dust.				
	Altitude	 1,000 m or less. With derating, usage is possible between 1,000 m and 2,000 m. Refer to the following section for derating specifications. <i>Derating Specifications</i> (page 246) 					
	Others	Do not use the SERVOPACK in the following locations: Locations subject to static electricity noise, strong electromagnetic/magnet fields, or radioactivity					
Applicable S	Standards	55011 group 1 clas	50178, CSA C22.2 No.14, EN 61800-5-1, EN s A, EN 61000-6-2, EN 61000-6-4, EN 61800-3, EC 61800-5-2, IEC 62061, ISO 13849-1, and IEC				
		Mounting	SERVOPACK Model: SGD7S-				
Manuatinan		Base-mounted	All Models				
Mounting		Rack-mounted	R70A, R90A, 1R6A, 2R8A, 3R8A, 5R5A, 7R6A, 120A, 180A, 200A				
	Speed Control Range		torque, the lower limit of the speed control range Servomotor to stop.)				
			eed max. (for a load fluctuation of 0% to 100%)				
	Coefficient of Speed	0% of rated speed max. (for a voltage fluctuation of $\pm 10\%$)					
Perfor- mance	Fluctuation ^{*1}	±0.1% of rated spe ±25°C)	ed max. (for a temperature fluctuation of 25°C				
	Torque Control Preci- sion (Repeatability)	±1%					
	Soft Start Time Setting	0 s to 10 s (Can be set separately for acceleration and deceleration					

SERVOPACKs

Continued from previous page.

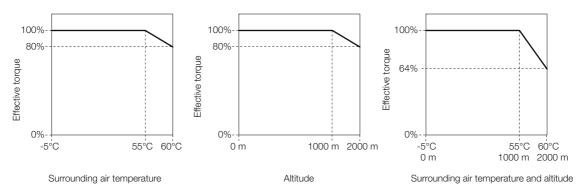
	Item		Specification					
	Encoder D	ivided Pulse	Phase A, phase B, phase C: Line-driver output					
	Output Linear Ser Overheat F Signal Inpu	Protection	Number of divided output pulses: Any setting is allowed. Number of input points: 1 Input voltage range: 0 V to +5 V					
			Allowable voltage range: 24 VDC ±20% Number of input points: 7					
	Sequence Input Signals	Input Signals That Can Be Allocated	 Input method: Sink inputs or source inputs Input Signals: Origin Return Deceleration Switch (/DEC) External Latch 1 to 3 (/EXT 1 to 3) Forward Drive Prohibit (P-OT) and Reverse Drive Prohibit (N-OT) Forward External Torque Limit (/P-CL) and Reverse External Torque Limit (/N-CL) Polarity Detection (/P-DET) A signal can be allocated and the positive and negative logic can be changed. 					
I/O Signals		Fixed Output	Allowable voltage range: 5 VDC to 30 VDC Number of output points: 1 Output signal: Servo Alarm (ALM)					
	Sequence Output Signals	Output Signals That Can Be Allo- cated	Allowable voltage range: 5 VDC to 30 VDC Number of output points: 3 (A photocoupler output (isolated) is used.) Output Signals: • Positioning Completion (/COIN) • Speed Coincidence Detection (/V-CMP) • Rotation Detection (/TGON) • Servo Ready Output (/S-RDY) • Torque Limit Detection (/CLT) • Speed Limit Detection (/VLT) • Brake (/BK) • Warning Output (/WARN) • Near Output (/NEAR) A signal can be allocated and the positive and negative logic can be changed.					
	RS-422A	Interfaces 1:N	Digital Operator (JUSP-OP05A-1-E) and personal computer (with Sig- maWin+)					
	Commu- nications	Communi- cations	Up to N = 15 stations possible for RS-422A port					
Communi- cations	(CN3)	Axis Address Setting	Set with parameters.					
	USB Commu- nications (CN7)	Interface Communi- cations Standard	Personal computer (with SigmaWin+) Conforms to USB2.0 standard (12 Mbps).					
Displays/Ind	icators	L	CHARGE, PWR, and COM indicators, and one-digit seven-segment display					
			- · · · · · · · · · · · · · · · · · · ·					

$\Sigma\text{-}7S$ Single-axis MECHATROLINK-II Communications Reference SERVOPACKs

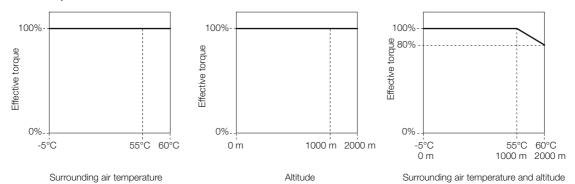
Continued from previous page.

	Item	Specification					
	Communications Pro- tocol	MECHATROLINK-II					
MECHA- TROLINK-II	Station Address Settings	41 to 5F hex (maximum number of slaves: 30) Selected with the combination of a rotary switch (S2) and DIP switch (S3).					
Communi- cations	Baud Rate	10 Mbps, 4 Mbps A DIP switch (S3) is used to select the baud rate.					
	Transmission Cycle	250 µs or 0.5 ms to 4.0 ms (multiples of 0.5 ms)					
	Number of Transmis- sion Bytes	17 or 32 bytes/station A DIP switch (S3) is used to select the number of transmission bytes.					
Reference	Performance	Position, speed, or torque control with MECHATROLINK-II communi- cations					
Method	Reference Input	MECHATROLINK-I or MECHATROLINK-II commands (sequence, motion, data setting, data access, monitoring, adjustment, etc.)					
MECHATRO	LINK-II Communica-	Rotary switch (S2) positions: 16					
tions Setting	Switches	Number of DIP switch (S3) pins: 4					
Analog Moni	tor (CN5)	Number of points: 2 Output voltage range: ±10 VDC (effective linearity range: ±8 V) Resolution: 16 bits Accuracy: ±20 mV (Typ) Maximum output current: ±10 mA Settling time (±1%): 1.2 ms (Typ)					
Dynamic Bra	ke (DB)	Activated when a servo alarm or overtravel (OT) occurs, or when the power supply to the main circuit or servo is OFF.					
Regenerative	e Processing	Built-in (An external resistor must be connected to the SGD7S-470A to -780A.)					
Overtravel (C)T) Prevention	Stopping with dynamic brake, deceleration to a stop, or coasting to a stop for the P-OT (Forward Drive Prohibit) or N-OT (Reverse Drive Prohibit) signal					
Protective Fu	unctions	Overcurrent, overvoltage, low voltage, overload, regeneration error, etc.					
Utility Function	ons	Gain adjustment, alarm history, jogging, origin search, etc.					
	Inputs	/HWBB1 and /HWBB2: Base block signals for Power Modules					
Safety	Output	EDM1: Monitors the status of built-in safety circuit (fixed output).					
Functions	Applicable Standards ^{*2}	ISO13849-1 PLe (Category 3), IEC61508 SIL3					
Option Modu	lle	Fully-Closed Module					

*1. The coefficient of speed fluctuation for load fluctuation is defined as follows:


Coefficient of speed fluctuation = <u>No-load motor speed - Total-load motor speed</u> × 100% Rated motor speed

*2. Always perform risk assessment for the system and confirm that the safety requirements are met.


Derating Specifications

If you use the SERVOPACK at a surrounding air temperature of 55°C to 60°C or at an altitude of 1,000 m to 2,000 m, you must apply the derating rates given in the following graphs.

◆ SGD7S-R70A, -R90A, -1R6A, and -2R8A

SGD7S-3R8A, -5R5A, -7R6A, -120A, -180A, -200A, -330A, -470A, -550A, -590A, and -780A

SERVOPACKs

Model Designations

$\Sigma\text{-7S}$ Single-axis MECHATROLINK-III Communications Reference SERVOPACKs

Σ-7 Se		ACKs - R70	A 4th digit	20 5th+6th digits	A 7th digit	8th+9th dig)1 h+10th its		
1st+2nd	d+3rd di	gits Maximum Applicable Motor Capacity	4th dig	it Voltage			8th+9t	h+10th digits Specific	re Options ation
Voltage		Specification	Code	Spec 200 VAC	ification		Code	Specification	Applicable Models
	R70*1	0.05 kW	A	200 VAC			None	Without options	All models
	R90*1 1R6*1	0.1 kW 0.2 kW	5th+6t	th digits Inter	face*2		001	Rack-mounted	SGD7S-R70A to
	2R8*1	0.2 KW	Code		fication		002	Varnished	-200A
Three-	3R8	0.5 kW		MECHATRO					
phase,	5R5*1	0.75 kW	20	communications reference					
200 VAC	7R6	1.0 kW							
	120	1.5 kW	7th dig	git Design Revis	sion Order				
	180	2.0 kW	А						
	200	3.0 kW	7.						
	330	5.0 kW							
	470	6.0 kW							
	550	7.5 kW							
	590	11 kW							
	780	15 kW							

*1. You can use these models with either a single-phase or three-phase input.

*2. The same SERVOPACKs are used for both Rotary Servomotors and Linear Servomotors.

 Σ -7S Single-axis MECHATROLINK-III Communications Reference SERVOPACKs

Ratings and Specifications

Ratings

◆ Three-phase, 200 VAC

М	Model SGD7S-			R90A	1R6A	2R8A	3R8A	5R5A	7R6A	120A	180A	200A	330A
Maximum Ap	Maximum Applicable Motor Capacity [kW]			0.1	0.2	0.4	0.5	0.75	1.0	1.5	2.0	3.0	5.0
Continuous	Output Curre	ent [Arms]	0.66	0.91	1.6	2.8	3.8	5.5	7.6	11.6	18.5	19.6	32.9
Instantaneous	Maximum Output	Current [Arms]	2.1	3.2	5.9	9.3	11	16.9	17	28	42	56	84.0
Main	Power Supp	oly	200 VAC to 240 VAC, -15%% to +10%, 50 Hz/60 Hz										
Circuit	Input Curre	nt [Arms]*	0.4	0.8	1.3	2.5	3.0	4.1	5.7	7.3	10	15	25
Control Pov	ver Supply			20	0 VAC	to 240	VAC,	-15%%	to +10	0%, 50	Hz/60	Hz	
Power Sup	oly Capacity [kVA]*	0.2	0.3	0.5	1.0	1.3	1.6	2.3	3.2	4.0	5.9	7.5
	Main Circuit Power Loss [W]		5.1	7.3	13.5	24.0	20.1	43.8	53.6	65.8	111.9	113.8	263.7
Power	Control Circuit Power Loss [W]		17	17	17	17	17	17	17	22	22	22	27
Loss*	Built-in Regenerative Resistor Power Loss [W]		-	_	_	-	8	8	8	10	16	16	36.0
	Total Power	Loss [W]	22.1	24.3	30.5	41.0	45.1	68.8	78.6	97.8	149.9	151.8	326.7
Regenera-	Built-In Regenera-	Resis- tance $[\Omega]$	-	Ι	-	-	40	40	40	20	12	12	8
tive Resis-	tive Resis- tor	Capacity [W]	-	-	-	-	40	40	40	60	60	60	180
lui	Minimum Allowable External Resistance $[\Omega]$		40	40	40	40	40	40	40	20	12	12	8
Overvoltage	Category					·	•		•		•	•	

* This is the net value at the rated load.

	Model SGD7S-		470A	550A	590A	780A
Maximum Appli	cable Motor Capa	city [kW]	6.0	7.5	11	15
Continuous Out	put Current [Arms	;]	46.9	54.7	58.6	78.0
Instantaneous N	Aaximum Output (Current [Arms]	110	130	140	170
Main	Power Supply		200 VAC to	240 VAC, -159	%% to +10%,	50 Hz/60 Hz
Circuit	Input Current [A	.rms] ^{*1}	29	37	54	73
Control Power S	Supply		200 VAC to	240 VAC, -159	%% to +10%,	50 Hz/60 Hz
Power Supply C	Capacity [kVA] ^{*1}	10.7	14.6	21.7	29.6	
	Main Circuit Po	wer Loss [W]	279.4	357.8	431.7	599.0
	Control Circuit F	Power Loss [W]	33	33	48	48
Power Loss ^{*1}	External Regene Unit Power Loss		180 ^{*2}	180*3	350 ^{*3}	350 ^{*3}
	Total Power Los	s [W]	312.4	390.8	479.7	647.0
	External	Resistance $[\Omega]$	6.25 ^{*2}	3.13 ^{*3}	3.13 ^{*3}	3.13 ^{*3}
External Regenerative	Regenerative Resistor Unit	Capacity [W]	880 ^{*2}	1760 ^{*3}	1760 ^{*3}	1760 ^{*3}
Resistor Unit	Minimum Allowa Resistance $[\Omega]$	able External	5.8	2.9	2.9	2.9
Overvoltage Ca	tegory					

*1. This is the net value at the rated load.

*2. This value is for the optional JUSP-RA04-E Regenerative Resistor Unit.

*3. This value is for the optional JUSP-RA05-E Regenerative Resistor Unit.

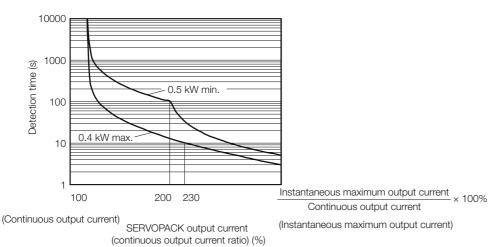
	Model SGD7S-		R70A	R90A	1R6A	2R8A	5R5A
Maximum App	licable Motor Ca	pacity [kW]	0.05	0.1	0.2	0.4	0.75
Continuous Ou	utput Current [Ar	ms]	0.66	0.91	1.6	2.8	5.5
Instantaneous [Arms]	Maximum Outpu	ut Current	2.1	3.2	5.9	9.3	16.9
Main Circult	Power Supply		200 VA	C to 240 VA	C, -15% to -	+10%, 50 Hz	z/60 Hz
Main Circuit	Input Current [Arms] ^{*3}	0.8	1.6	2.4	5.0	8.7
Control Power	Supply		200 VA	C to 240 VA	C, -15% to -	+10%, 50 Hz	z/60 Hz
Power Supply	Power Supply Capacity [kVA]*3				0.6	1.2	1.9
	Main Circuit Po	ower Loss [W]	5.1	7.3	13.5	24.0	43.8
Power Loss*3	Control Circuit [W]	Power Loss	17	17	17	17	17
Power Loss	Built-in Regent tor Power Loss		-	-	-	-	8
	Total Power Lo	oss [W]	22.1	24.3	30.5	41.0	68.8
Demonstra	Built-In Regenerative	Resistance $[\Omega]$	-	-	-	-	40
Regenerative Resistor	Resistor	Capacity [W]	-	-	-	-	40
10010101	Minimum Allov Resistance [Ω]		40	40	40	40	40
Overvoltage Ca	ategory			;		;	

Single-phase, 200 VAC

*1. Single-phase, 200-VAC power supply input is available as a hardware option.

*2. The ratings are 220 VAC to 240 VAC, -15% to 10%, 50 Hz/60 Hz

*3. This is the net value at the rated load.


SERVOPACK Overload Protection Characteristics

The overload detection level is set for hot start conditions with a SERVOPACK surrounding air temperature of 55°C.

An overload alarm (A.710 or A.720) will occur if overload operation that exceeds the overload protection characteristics shown in the following diagram (i.e., operation on the right side of the applicable line) is performed.

The actual overload detection level will be the detection level of the connected SERVOPACK or Servomotor that has the lower overload protection characteristics.

In most cases, that will be the overload protection characteristics of the Servomotor.

Note: The above overload protection characteristics do not mean that you can perform continuous duty operation with an output of 100% or higher.

For a Yaskawa-specified combination of SERVOPACK and Servomotor, maintain the effective torque within the continuous duty zone of the torque-motor speed characteristic of the Servomotor.

SERVOPACKs Σ-7S Single-axis MECHATROLINK-III Communications Reference SERVOPACKs

Specifications

	Item		Specification			
Drive Metho	d	IGBT-based PWM control	, sine wave current drive			
	With Rotary Servomotor	encoder)	24 bits (incremental encoder/absolute			
Feedback	With Linear Servomotor	lute linear encoder.) • Incremental linear encod	(The signal resolution depends on the abso- der (The signal resolution depends on the der or Serial Converter Unit.)			
	Surrounding Air Temperature		ossible between 55°C and 60°C. tion for derating specifications. s (page 253)			
	Storage Temperature	-20°C to 85°C				
	Surrounding Air Humidity	95% relative humidity max	x. (with no freezing or condensation)			
	Storage Humidity	95% relative humidity max	x. (with no freezing or condensation)			
	Vibration Resistance	4.9 m/s ²				
	Shock Resistance	19.6 m/s ²				
Environ-		Class	SERVOPACK Model: SGD7S-			
mental	Protection Class		1R6A, 2R8A, 3R8A, 5R5A, 7R6A, 120A			
Conditions		IP10 180A, 200A, 3	330A, 470A, 550A, 590A, 780A			
	Pollution Degree	 2 Must be no corrosive or Must be no exposure to Must be no dust, salts, 	water, oil, or chemicals.			
	Altitude	 1,000 m or less. With derating, usage is possible between 1,000 m and 2,000 m. Refer to the following section for derating specifications. <i>Derating Specifications</i> (page 253) 				
	Others	Do not use the SERVOPACK in the following locations: Locations subject to static electricity noise, strong electromagnetic/magnetic fields, or radioactivity				
Applicable S	Standards	UL 61800-5-1, EN 50178, CSA C22.2 No.14, EN 61800-5-1, EN 55011 group 1 class A, EN 61000-6-2, EN 61000-6-4, EN 61800-3, IEC 61508-1 to 4, IEC 61800-5-2, IEC 62061, ISO 13849-1, and IEC 61326-3-1				
		Mounting	SERVOPACK Model: SGD7S-			
Mounting		Base-mounted	All Models			
		Rack-mounted	R70A, R90A, 1R6A, 2R8A, 3R8A, 5R5A, 7R6A, 120A, 180A, 200A			
	Speed Control Range	1:5000 (At the rated torque must not cause the Serve	ue, the lower limit of the speed control range motor to stop.)			
			ax. (for a load fluctuation of 0% to 100%)			
Perfor- mance	Coefficient of Speed Fluctuation ^{*1}	0% of rated speed max. (for a voltage fluctuation of ±10%) ±0.1% of rated speed max. (for a temperature fluctuation of 25°C ±25°C)				
	Torque Control Preci- sion (Repeatability)	±1%				
	Soft Start Time Setting	0 s to 10 s (Can be set se	eparately for acceleration and deceleration.)			

Continued from previous page.

Item			Specification		
I/O Signals	Encoder Divided Pulse Output		Phase A, phase B, phase C: Line-driver output Number of divided output pulses: Any setting is allowed.		
	Linear Servomotor Overheat Protection Signal Input		Number of input points: 1 Input voltage range: 0 V to +5 V		
			Allowable voltage range: 24 VDC ±20% Number of input points: 7		
	Sequence Input Signals	Input Signals That Can Be Allo- cated	 Input method: Sink inputs or source inputs Input Signals: Origin Return Deceleration Switch (/DEC) External Latch 1 to 3 (/EXT 1 to 3) Forward Drive Prohibit (P-OT) and Reverse Drive Prohibit (N-OT) Forward External Torque Limit (/P-CL) and Reverse External Torque Limit (/N-CL) Polarity Detection (/P-DET) A signal can be allocated and the positive and negative logic can be changed. 		
	Sequence Output Signals	Fixed Output	Allowable voltage range: 5 VDC to 30 VDC Number of output points: 1 Output signal: Servo Alarm (ALM)		
		Output Signals That Can Be Allo- cated	Allowable voltage range: 5 VDC to 30 VDC Number of output points: 3 (A photocoupler output (isolated) is used.)		
			Output Signals: • Positioning Completion (/COIN) • Speed Coincidence Detection (/V-CMP) • Rotation Detection (/TGON) • Servo Ready Output (/S-RDY) • Torque Limit Detection (/CLT) • Speed Limit Detection (/VLT) • Brake (/BK) • Warning Output (/WARN) • Near Output (/NEAR) A signal can be allocated and the positive and negative logic can be changed.		
	RS-422A Communi- cations (CN3)	Inter- faces 1:N	Digital Operator (JUSP-OP05A-1-E) and personal computer (with Sig- maWin+)		
Communi- cations		Commu- nications	Up to N = 15 stations possible for RS-422A port		
		Axis Address Setting	Set with parameters.		
	USB	Interface	Personal computer (with SigmaWin+)		
	Communi- cations (CN7) Commu- nica- tions Standard		Conforms to USB2.0 standard (12 Mbps).		
Displays/Indicators			CHARGE, PWR, COM, L1, and L2 indicators, and one-digit seven-seg-		

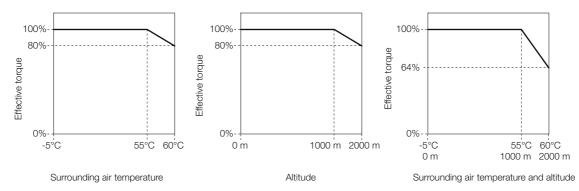
SERVOPACKs

Σ-7S Single-axis MECHATROLINK-III Communications Reference SERVOPACKs

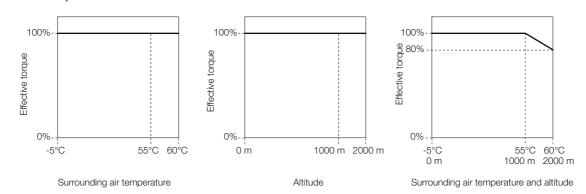
Item Specification Communications MECHATROLINK-III Protocol Station Address 03 to EF hex (maximum number of slaves: 62) MECHA-The rotary switches (S1 and S2) are used to set the station address. Settings TROLINK-Baud Rate 100 Mbps III Commu-125 µs, 250 µs, 500 µs, 750 µs, nications Transmission Cycle 1.0 ms to 4.0 ms (multiples of 0.5 ms) Number of Transmis-16, 32, or 48 bytes/station sion Bytes A DIP switch (S3) is used to select the number of transmission bytes. Position, speed, or torque control with MECHATROLINK-III communi-Performance cations Reference MECHATROLINK-III commands (sequence, motion, data setting, data Method **Reference Input** access, monitoring, adjustment, etc.) Profile MECHATROLINK-III standard servo profile Rotary switch (S1 and S2) positions: 16 MECHATROLINK-III Communications Setting Switches Number of DIP switch (S3) pins: 4 Number of points: 2 Output voltage range: ±10 VDC (effective linearity range: ±8 V) Resolution: 16 bits Analog Monitor (CN5) Accuracy: ±20 mV (Typ) Maximum output current: ±10 mA Settling time (±1%): 1.2 ms (Typ) Activated when a servo alarm or overtravel (OT) occurs, or when the Dynamic Brake (DB) power supply to the main circuit or servo is OFF. Built-in (An external resistor must be connected to the SGD7S-470A to **Regenerative Processing** -780A.) Built-In Regenerative Resistor (page 333) Stopping with dynamic brake, deceleration to a stop, or coasting to a Overtravel (OT) Prevention stop for the P-OT (Forward Drive Prohibit) or N-OT (Reverse Drive Prohibit) signal **Protective Functions** Overcurrent, overvoltage, low voltage, overload, regeneration error, etc. **Utility Functions** Gain adjustment, alarm history, jogging, origin search, etc. Inputs /HWBB1 and /HWBB2: Base block signals for Power Modules Output EDM1: Monitors the status of built-in safety circuit (fixed output). Safety Functions Applicable ISO13849-1 PLe (Category 3), IEC61508 SIL3 Standards*2 **Option Module** Fully-Closed Module

Continued from previous page.

*1. The coefficient of speed fluctuation for load fluctuation is defined as follows:


 $Coefficient of speed fluctuation = \frac{No-load motor speed - Total-load motor speed}{Rated motor speed} \times 100\%$

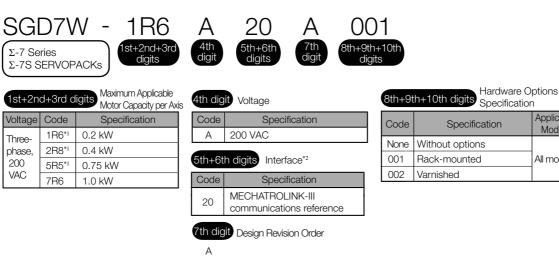
*2. Always perform risk assessment for the system and confirm that the safety requirements are met.


Derating Specifications

If you use the SERVOPACK at a surrounding air temperature of 55°C to 60°C or at an altitude of 1,000 m to 2,000 m, you must apply the derating rates given in the following graphs.

◆ SGD7S-R70A, -R90A, -1R6A, and -2R8A

SGD7S-3R8A, -5R5A, -7R6A, -120A, -180A, -200A, -330A, -470A, -550A, -590A, and -780A


SERVOPACKs

Σ-7W Two-axis MECHATROLINK-III Communications Reference SERVOPACKs

Applicable Models

All models

Model Designations

 $\ast 1.$ You can use these models with either a single-phase or three-phase input.

*2. The same SERVOPACKs are used for both Rotary Servomotors and Linear Servomotors.

Ratings and Specifications

Ratings

◆ Three-phase, 200 VAC

	Model SGD7W-	1R6A	2R8A	5R5A	7R6A	
Maximum Applicable Motor Capacity per Axis [kW]			0.2	0.4	0.75	1.0
Continuous Output Current per Axis [Arms]			1.6	2.8	5.5	7.6
Instantaneous Maximum Output Current per Axis [Arms]			5.9	9.3	16.9	17.0
	Power Supply		200 VAC to 240 VAC, -15% to +10%, 50 Hz/60 Hz			
Main Circuit	Input Current [Arms]*	2.5	4.7	7.8	11	
Control Power Supply			200 VAC to 240 VAC, -15% to +10%, 50 Hz/60 Hz			
Power Supply Capacity [kVA]*			1.0	1.9	3.2	4.5
	Main Circuit Power Loss [W]		27.0	48.0	87.6	107.2
	Control Circuit Power Loss [W]		24	24	24	24
Power Loss*	Built-in Regenerative Resistor Power Loss [W]		8	8	16	16
	Total Power Loss [W]	59.0	80.0	127.6	147.2	
Regenerative Resistor	Built-In Regenerative Resistor	Resistance $[\Omega]$	40	40	12	12
		Capacity [W]	40	40	60	60
	Minimum Allowable External Resistance $\left[\Omega\right]$		40	40	40	40
Overvoltage Category			III			

* This is the net value at the rated load.

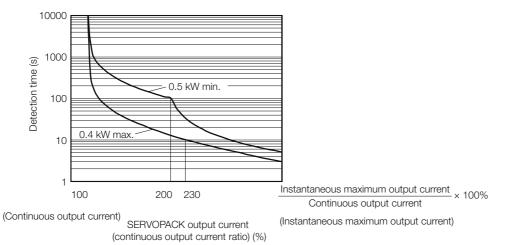
♦ Single-phase, 200 VAC

	Model SGD7W-		1R6A	2R8A	5R5A ^{*1}		
Maximum Applicable Motor Capacity per Axis [kW]			0.2	0.4	0.75		
Continuous Output Current per Axis [Arms]			1.6	2.8	5.5		
Instantaneous Maximum Output Current per Axis [Arms]			5.9	9.3	16.9		
Main Oinerrit	Power Supply		200 VAC to 240 VAC, -15% to +10%, 50 Hz/60 Hz				
Main Circuit	Input Current [Arms]*2	2	5.5	11	12		
Control Power	Control Power Supply			200 VAC to 240 VAC, -15% to +10%, 50 Hz/60 Hz			
Power Supply Capacity [kVA] ^{*2}			1.3	2.4	2.7		
	Main Circuit Power Lo	oss [W]	27.0	48.0	87.6		
	Control Circuit Power	Loss [W]	24	24	24		
Power Loss ^{*2}	Built-in Regenerative Power Loss [W]	Resistor	8	8	16		
	Total Power Loss [W]		59.0	80.0	127.6		
Regenerative Resistor	Built-In Regenerative Resistor	Resistance $[\Omega]$	40	40	12		
		Capacity [W]	40	40	60		
	Minimum Allowable E Resistance [Ω]	xternal	40	40	40		
Overvoltage Category				III			

*1. If you use the SGD7W-5R5A with a single-phase 200-VAC power supply input, use a load ratio of 65% max.

*2. This is the net value at the rated load.

Σ-7W Two-axis MECHATROLINK-III Communications Reference SERVOPACKs


SERVOPACK Overload Protection Characteristics

The overload detection level is set for hot start conditions with a SERVOPACK surrounding air temperature of 55°C.

An overload alarm (A.710 or A.720) will occur if overload operation that exceeds the overload protection characteristics shown in the following diagram (i.e., operation on the right side of the applicable line) is performed.

The actual overload detection level will be the detection level of the connected SERVOPACK or Servomotor that has the lower overload protection characteristics.

In most cases, that will be the overload protection characteristics of the Servomotor.

Note: The above overload protection characteristics do not mean that you can perform continuous duty operation with an output of 100% or higher.

For a Yaskawa-specified combination of SERVOPACK and Servomotor, maintain the effective torque within the continuous duty zone of the torque-motor speed characteristic of the Servomotor.

Specifications

Item		Specification			
Control Method		IGBT-based PWM control, sine wave current drive			
Feedback	With Rotary Servomotor	Serial encoder: 20 bits or 24 bits (incremental encoder/absolute encoder) 22 bits (absolute encoder)			
	With Linear Servomotor	 Absolute linear encoder (The signal resolution depends on the absolute linear encoder.) Incremental linear encoder (The signal resolution depends on the incremental linear encoder or Serial Converter Unit.) 			
	Surrounding Air Temperature	-5°C to 55°C With derating, usage is possible between 55°C and 60°C. Refer to the following section for derating specifications. <i>Derating Specifications</i> (page 259)			
	Storage Temperature	-20°C to 85°C			
	Surrounding Air Humidity	95% relative humidity max. (with no freezing or condensation)			
	Storage Humidity	95% relative humidity max. (with no freezing or condensation)			
	Vibration Resistance	4.9 m/s ²			
Environ-	Shock Resistance	19.6 m/s ²			
mental	Protection Class	IP20			
Conditions	Pollution Degree	 2 Must be no corrosive or flammable gases. Must be no exposure to water, oil, or chemicals. Must be no dust, salts, or iron dust. 			
	Altitude	1,000 m or less. With derating, usage is possible between 1,000 m and 2,000 m. Refer to the following section for derating specifications. <i>Derating Specifications</i> (page 259)			
	Others	Do not use the SERVOPACK in the following locations: Locations sub- ject to static electricity noise, strong electromagnetic/magnetic fields, or radioactivity			
Applicable Standards		UL 61800-5-1, EN50178, CSA C22.2 No.14, EN 61800-5-1, EN 55011 group 1 class A, EN 61000-6-2, EN 61000-6-4, and EN 61800-3			
Mounting		Base-mounted or rack-mounted			
Perfor- mance	Speed Control Range	1:5000 (At the rated torque, the lower limit of the speed control range must not cause the Servomotor to stop.)			
	Coefficient of Speed Fluctuation*	$\pm 0.01\%$ of rated speed max. (for a load fluctuation of 0% to 100%)			
		0% of rated speed max. (for a voltage fluctuation of $\pm 10\%$)			
		$\pm 0.1\%$ of rated speed max. (for a temperature fluctuation of 25°C ± 25 °C)			
	Torque Control Preci- sion (Repeatability)	±1%			
	Soft Start Time Setting	0 s to 10 s (Can be set separately for acceleration and deceleration.)			

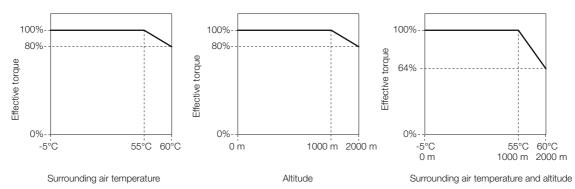
Σ-7W Two-axis MECHATROLINK-III Communications Reference SERVOPACKs

Continued from previous page. Item Specification Linear Servomotor Number of input points: 2 **Overheat Protection** Input voltage range: 0 V to +5 V Signal Input Allowable voltage range: 24 VDC ±20% Number of input points: 12 Input method: Sink inputs or source inputs Input Input Signals Signals Origin Return Deceleration Switch (/DEC) Sequence That • External Latch (/EXT 1 to 3) Input Sig-Can Be • Forward Drive Prohibit (P-OT) and Reverse Drive Prohibit (N-OT) nals Allo-• Forward External Torque Limit (/P-CL) and Reverse External Torque cated Limit (/N-CL) Polarity Detection (/P-DET) A signal can be allocated and the positive and negative logic can be changed. Allowable voltage range: 5 VDC to 30 VDC Fixed I/O Signals Number of output points: 2 Output Output signal: Servo Alarm (ALM) Allowable voltage range: 5 VDC to 30 VDC Number of output points: 5 (A photocoupler output (isolated) is used.) Output Signals Positioning Completion (/COIN) Sequence Output Speed Coincidence Detection (/V-CMP) Output Signals Rotation Detection (/TGON) Signals That Servo Ready (/S-RDY) Can Be • Torque Limit Detection (/CLT) Allo-• Speed Limit Detection (/VLT) cated Brake (/BK) • Warning (/WARN) Near (/NEAR) A signal can be allocated and the positive and negative logic can be changed. Digital Operator (JUSP-OP05A-1-E) and personal computer (with Sig-IntermaWin+) faces 1:N RS-422A Communi-Commu-Up to N = 15 stations possible for RS-422A port cations nications (CN3) Axis Communi-Address Set with parameters. cations Settings Interface Personal computer (with SigmaWin+) USB Commu-Communinicacations tions Conforms to USB2.0 standard (12 Mbps). (CN7) Standard CHARGE, PWR, COM, L1, and L2 indicators, and two, one-digit Displays/Indicators seven-segment displays

$\Sigma\text{-7W}$ Two-axis MECHATROLINK-III Communications Reference SERVOPACKs

Continued from previous page.

Item		Specification		
MECHA- TROLINK- III Commu- nications	Communications Protocol	MECHATROLINK-III		
	Station Address Settings	03 to EF hex (maximum number of slaves: 62) The rotary switches (S1 and S2) are used to set the station address.		
	Extended Address Setting	Axis 1: 00 hex, Axis 2: 01 hex		
	Baud Rate	100 Mbps		
	Transmission Cycle	250 μs, 500 μs, 750 μs, 1.0 ms to 4.0 ms (multiples of 0.5 ms)		
	Number of Transmis- sion Bytes	16, 32, or 48 bytes/station A DIP switch (S3) is used to select the baud rate.		
Reference Method	Performance	Position, speed, or torque control with MECHATROLINK-III communi- cations		
	Reference Input	MECHATROLINK-III commands (sequence, motion, data setting, data access, monitoring, adjustment, etc.)		
	Profile	MECHATROLINK-III standard servo profile		
MECHATRO	LINK-III Communica-	Rotary switch (S1 and S2) positions: 16		
tions Setting	Switches	Number of DIP switch (S3) pins: 4		
Analog Monitor (CN5)		Number of points: 2 Output voltage range: ±10 VDC (effective linearity range: ±8 V) Resolution: 16 bits Accuracy: ±20 mV (Typ) Maximum output current: ±10 mA Settling time (±1%): 1.2 ms (Typ)		
Dynamic Brake (DB)		Activated when a servo alarm or overtravel (OT) occurs, or when the power supply to the main circuit or servo is OFF.		
Regenerative Processing		Built-in		
Overtravel (OT) Prevention		Stopping with dynamic brake, deceleration to a stop, or coasting to a stop for the P-OT (Forward Drive Prohibit) or N-OT (Reverse Drive Prohibit) signal		
Protective Functions		Overcurrent, overvoltage, low voltage, overload, regeneration error, etc.		
Utility Functi	ons	Gain adjustment, alarm history, jogging, origin search, etc.		

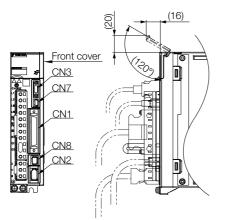

* The coefficient of speed fluctuation for load fluctuation is defined as follows:

 $Coefficient of speed fluctuation = \frac{No-load motor speed - Total-load motor speed}{Rated motor speed} \times 100\%$

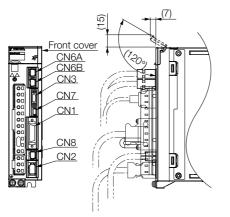
Derating Specifications

If you use the SERVOPACK at a surrounding air temperature of 55°C to 60°C or at an altitude of 1,000 m to 2,000 m, you must apply the derating rates given in the following graphs.

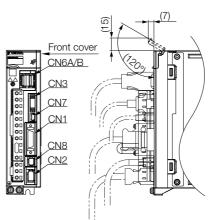
◆ SGD7W-1R6A, -2R8A, -5R5A, and -7R6A

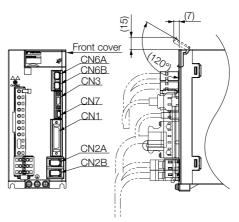

SERVOPACK External Dimensions

Front Cover Dimensions and Connector Specifications


The front cover dimensions and panel connectors depend on the SERVOPACK interface. Refer to the following figures.

Front Cover Dimensions


• Σ -7S Analog Voltage/Pulse Train Reference SERVOPACKs

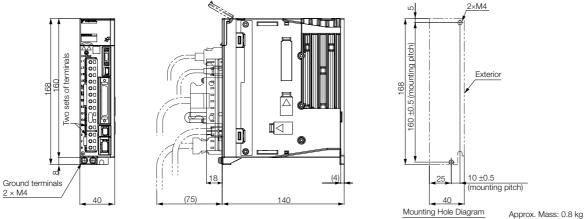

• Σ-7S MECHATROLINK-III Communications Reference SERVOPACKs

• Σ-7S MECHATROLINK-II Communications Reference SERVOPACKs

• Σ-7W MECHATROLINK-III Communications Reference SERVOPACKs

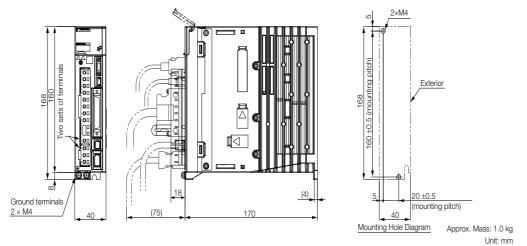
Connector Specifications

SERVOPACK	Connector No.	Model	Number of Pins	Manufacturer
	CN1	10250-59A3MB	50	Sumitomo 3M Ltd.
Σ-7S	CN2	3E106-0220KV	6	Sumitomo 3M Ltd.
Analog Voltage/Pulse Train Reference	CN3	HDR-EC14LFDTN- SLD-PLUS	14	Honda Tsushin Kogyo Co., Ltd.
SERVOPACK	CN7	2172034-1	5	Tyco Electronics Japan G.K.
	CN8	1981080-1	8	Tyco Electronics Japan G.K.
	CN1	10226-59A3MB	26	Sumitomo 3M Ltd.
	CN2	3E106-0220KV	6	Sumitomo 3M Ltd.
Σ-7S MECHATROLINK-II Communications	CN3	HDR-EC14LFDTN- SLD-PLUS	14	Honda Tsushin Kogyo Co., Ltd.
Reference SERVOPACK	CN6A/B	1903815-1	8	Tyco Electronics Japan G.K.
	CN7	2172034-1	5	Tyco Electronics Japan G.K.
	CN8	1981080-1	8	Tyco Electronics Japan G.K.
	CN1	10226-59A3MB	26	Sumitomo 3M Ltd.
	CN2	3E106-0220KV	6	Sumitomo 3M Ltd.
Σ-7S MECHATROLINK-III	CN3	HDR-EC14LFDTN- SLD-PLUS	14	Honda Tsushin Kogyo Co., Ltd.
Communications Reference SERVOPACK	CN6A, CN6B	1981386-1	8	Tyco Electronics Japan G.K.
	CN7	2172034-1	5	Tyco Electronics Japan G.K.
	CN8	1981080-1	8	Tyco Electronics Japan G.K.
	CN1	10236-59A3MB	36	Sumitomo 3M Ltd.
Σ-7W	CN2A, CN2B	3E106-2230KV	6	Sumitomo 3M Ltd.
MECHATROLINK-III Communications	CN3	HDR-EC14LFDTN- SLD-PLUS	14	Honda Tsushin Kogyo Co., Ltd.
Reference SERVOPACK	CN6A, CN6B	1981386-1	8	Tyco Electronics Japan G.K.
	CN7	2172034-1	5	Tyco Electronics Japan G.K.

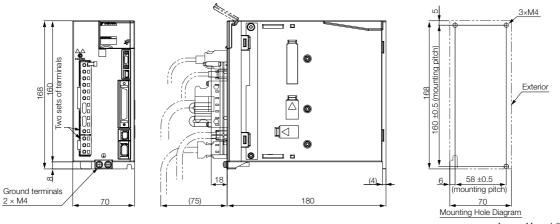

Note: The above connectors or their equivalents are used for the SERVOPACKs.

SERVOPACK External Dimensions

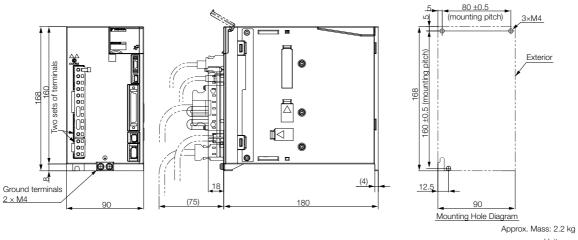
All of the dimensional drawings show Analog Voltage/Pulse Train Reference SERVOPACKs as typical examples.


Σ -7S SERVOPACKs: Base-mounted

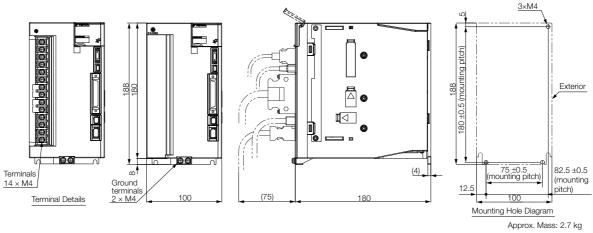
Three-phase, 200 VAC: SGD7S-R70A, -R90A, and -1R6A



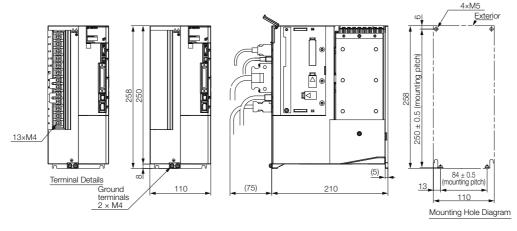
ox. Mass: 0.8 kg Unit: mm


Three-phase, 200 VAC: SGD7S-2R8A

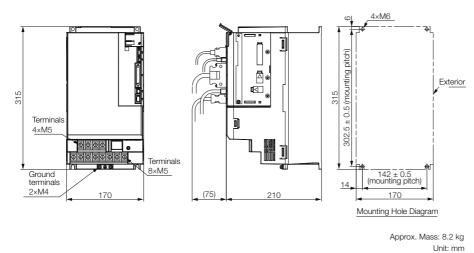
Three-phase, 200 VAC: SGD7S-3R8A, -5R5A, and -7R6A



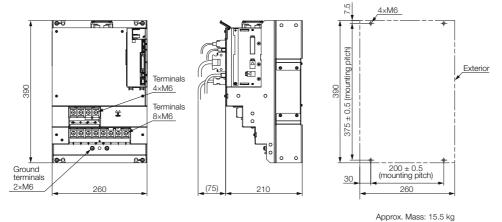
Approx. Mass: 1.6 kg Unit: mm Three-phase, 200 VAC: SGD7S-120A


Unit: mm

◆ Three-phase, 200 VAC: SGD7S-180A and -200A


Unit: mm

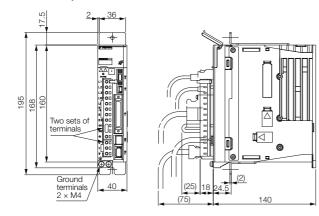
• Three-phase, 200 VAC: SGD7S-330A

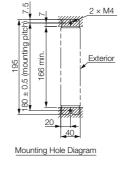


Approx. Mass: 4.4 kg Unit: mm

Three-phase, 200 VAC: SGD7S-470A and -550A

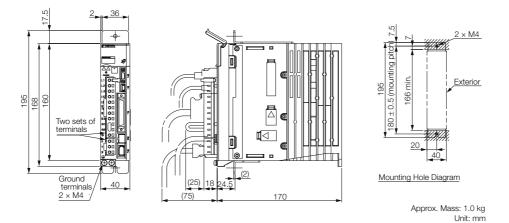
• Three-phase, 200 VAC: SGD7S-590A and -780A

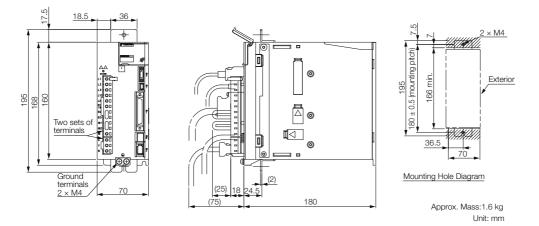



Unit: mm

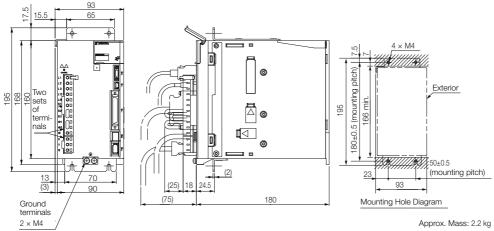
Σ-7S SERVOPACKs: Rack-mounted

Hardware Option Code: 001

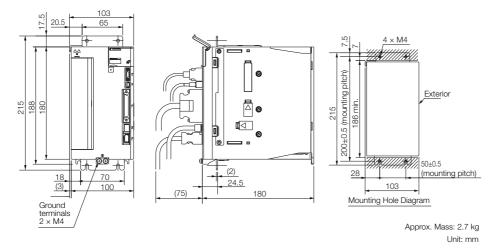

◆ Three-phase, 200 VAC: SGD7S-R70A, -R90A, and -1R6A



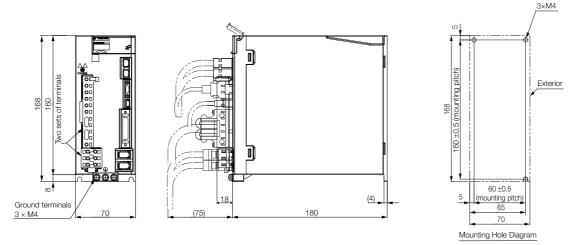
Approx. Mass: 0.8 kg Unit: mm


Three-phase, 200 VAC: SGD7S-2R8A

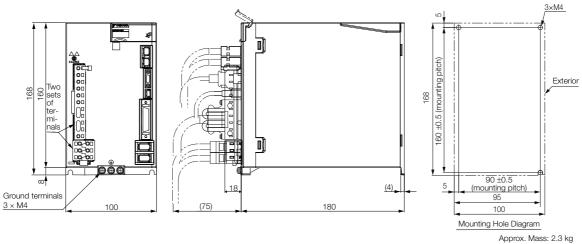
◆ Three-phase, 200 VAC: SGD7S-3R8A, -5R5A, and -7R6A



Three-phase, 200 VAC: SGD7S-120A

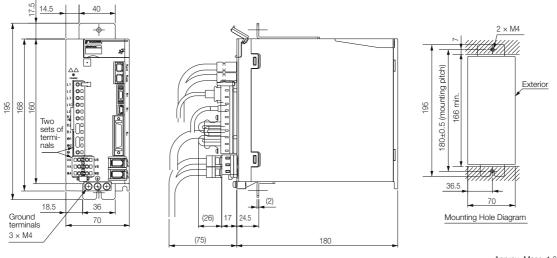

Unit: mm

◆ Three-phase, 200 VAC: SGD7S-180A and -200A

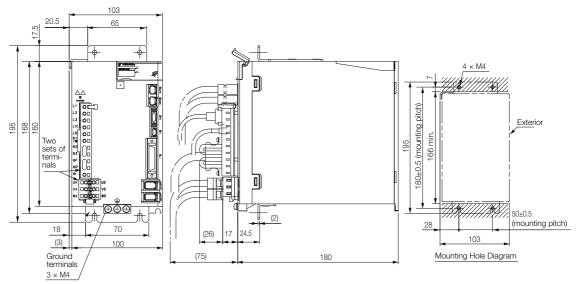

Σ -7W SERVOPACKs: Base-mounted

◆ Three-phase, 200 VAC: SGD7W-1R6A and -2R8A

Approx. Mass: 1.6 kg Unit: mm


Three-phase, 200 VAC: SGD7W-5R5A and -7R6A

Unit: mm


Σ-7W SERVOPACKs: Rack-mounted

Three-phase, 200 VAC: SGD7W-1R6A and -2R8A

Approx. Mass: 1.6 kg Unit: mm

Three-phase, 200 VAC: SGD7W-5R5A and -7R6A

Approx. Mass: 2.3 kg Unit: mm

MEMO

Option Modules

Feedback Option Modules270

Feedback Option Modules

Fully-Closed Module

With fully-closed control, an externally installed encoder is used to detect the position of the controlled machine and the machine's position information is fed back to the SERVOPACK. High-precision positioning is possible because the actual machine position is fed back directly. To perform fully-closed loop control, a Fully-Closed Module and SERVOPACK are required.

Model Designations

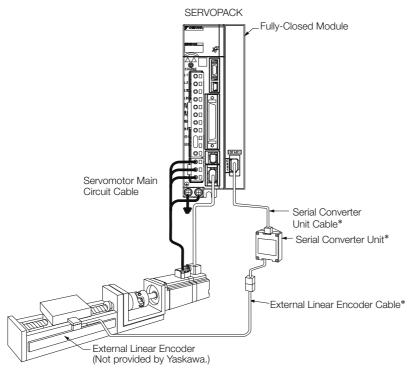
Purchasing a Module in a Set with the SERVOPACK

To order a SERVOPACK with a Fully-closed Module attached, use the following model numbers.

SG		1st+2nd+3	rd 4	th git 5th+6th	A 7th digit	000 8th+9th+10	001 th 11th+12th+	
-	Models	digits	a	git digits	algit	digits	13th digits	
1st+2nd	d+3rd di	gits Maximum Applicable Motor Capacity	4th digi	t Voltage		8th+9t		ware Options offication
Voltage		Specification	Code	Specification		Code	Specification	Applicable Models
	R70*2	0.05 kW		200 VAC		000	Without options	All models
	R90*2	0.1 kW	-			001	Rack-mounted	SGD7S-R70A to
	1R6*2 2R8*2	0.2 kW 0.4 kW	5th+6th	n digits Interface		002	Varnished	-200A
	2R8 - 3R8	0.4 KW	Code	Specification				· · · · · · · · · · · · · · · · · · ·
	5R5*2	0.75 kW		Analog voltage/pulse train reference				
Three-	7R6	1.0 kW	00					
phase,	120	1.5 kW		MECHATROLINK-II communications reference				
200	180	2.0 kW	10					
VAC	200	3.0 kW		MECHATROLINK-III				
	330	5.0 kW	20	communications refere	ence	11th+	12th+13th digits	Option Module
	470	6.0 kW				Code	Specificat	ion
	550	7.5 kW	7th dig	git Design Revision Orde	er	001	Fully-Closed Modu	le
	590	11 kW	A	-				
	780	15 kW	1					

*1. The model number of a SERVOPACK with an Option Module is not hyphenated after SGD7S.

 $\ast 2.$ You can use these models with either a single-phase or three-phase input.


Note: Contact your Yaskawa representative for information on combining options.

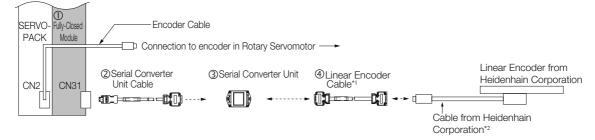
Purchasing a Module Separately

When ordering a SERVOPACK and a Fully-Closed Module separately, use the following Fully-Closed Module model number.

SGDV-OFA01A

System Configuration

* The connected devices and cables depend on the type of external Linear Encoder that is used.


Note: Refer to the following section for information on peripheral devices.

Peripheral Devices (page 320)

Connections to Linear Encoder from Heidenhain Corporation

Connections for a 1 Vp-p Analog Voltage Output Signal

You must make the connections through a Yaskawa Serial Converter Unit. The output signal will be multiplied by 8 bits (256 divisions) in the Serial Converter Unit.

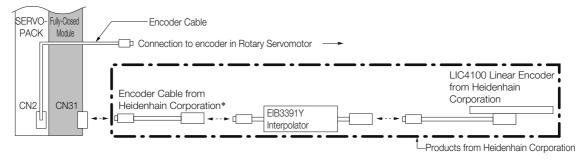
*1. When using a JZDP-J00D-DDD Serial Converter Unit, do not use a Yaskawa Linear Encoder Cable that is longer than 3 m.

*2. Contact Heidenhain Corporation for details on cables (analog 1 Vp-p output, D-sub 15-pin, male) from Heidenhain Corporation.

No.	Item	Model	Reference		
	Fully-closed Module (Purchased as a set with the SERVOPACK)	-1			
0	D Fully-Closed Module (Purchased alone)	Fully-Closed Module ^{*2} SGDV-OFA01A			
		Option Case Kit ^{*3} SGDV-OZA01A	-		
2	Serial Converter Unit Cable	JZSP-CLP70-DD-E	page 303		
3	Serial Converter Unit	JZDP-H003-000	page 305		
4	Linear Encoder Cable	JZSP-CLL30-□□-E	page 303		

*1. The model number of a set that includes the SERVOPACK and an Option Module is not hyphenated after "SGD7S."

*2. When ordering a SERVOPACK and a Fully-Closed Module separately, use this Fully-Closed Module model number.

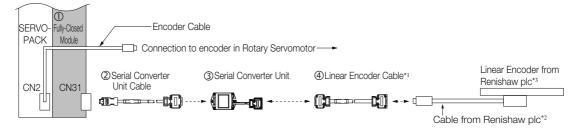

*3. One Option Case Kit is required for each SERVOPACK.

The set includes the module cover, PCB mounting plate, and two mounting screws.

Note: 1. Refer to the following section for recommended Linear Encoders.

- Recommended Linear Encoders (page M-21)
- 2. Refer to the following section for the specifications of the Serial Converter Units.
 - Device Selection Manual (Manual No.: SIEP S800001 32)
- 3. Refer to the following section for information on Servomotor Main Circuit Cables and Encoder Cables. Cables and Peripheral Devices (page 275)
- Connections When Using a Yaskawa Serial Interface for the Output Signals

• LIC4100 Linear Encoder with EIB3391Y Interpolator



* Use an Encoder Cable from Heidenhain Corporation. Contact Heidenhain Corporation for detailed Encoder Cable specifications.

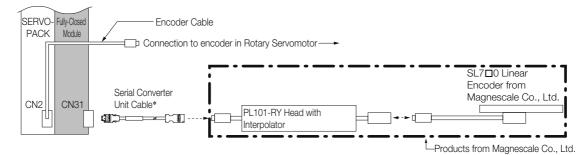
Connections to Linear Encoder from Renishaw Plc

Connections for a 1 Vp-p Analog Voltage Output Signal

You must make the connections through a Yaskawa Serial Converter Unit. The output signal will be multiplied by 8 bits (256 divisions) in the Serial Converter Unit.

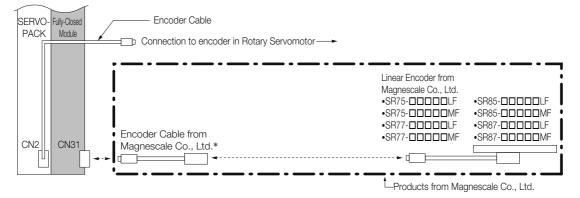
- *1. When using a JZDP-J00 --- Serial Converter Unit, do not use a Yaskawa Linear Encoder Cable that is longer than 3 m.
- *2. Contact Renishaw plc for details on cables (analog 1 Vp-p output, D-sub 15-pin, male) from Renishaw plc. However, the BID and DIR signals are not connected.
- *3. If you use the origin signals with a Linear Encoder from Renishaw plc, the origin may sometimes be falsely detected. If that occurs, use the BID/DIR signal to output the origin signal only in one direction.

No.	Item	Model	Reference
	Fully-closed Module (Purchased as a set with the SERVOPACK)	Without options: SGD7SDDDD0AD1 ^{*1} With options:SGD7SDDD0AD0AD1 ^{*1} Note: When a hardware option is mounted, D is replaced with a three-digit number that specifies the type of option.	_
0	Fully-Closed Module	Fully-Closed Module ^{*2} SGDV-OFA01A	
	(Purchased alone)	Option Case Kit ^{*3} SGDV-OZA01A	-
2	Serial Converter Unit Cable	JZSP-CLP70-DD-E	page 303
3	Serial Converter Unit	JZDP-H005-000	page 305
4	Linear Encoder Cable	JZSP-CLL00-DD-E	page 303

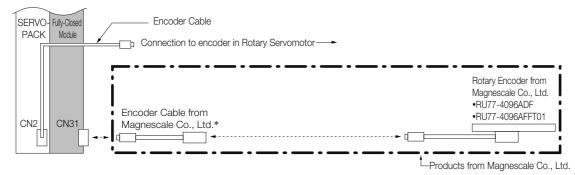

*1. The model number of a set that includes the SERVOPACK and an Option Module is not hyphenated after "SGD7S."

- *2. When ordering a SERVOPACK and a Fully-Closed Module separately, use this Fully-Closed Module model number.
- *3. One Option Case Kit is required for each SERVOPACK.
- The set includes the module cover, PCB mounting plate, and two mounting screws.
- Note: 1. Refer to the following section for recommended Linear Encoders.

Recommended Linear Encoders (page M-20)

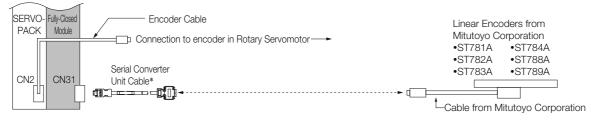

- 2. Refer to the following section for the specifications of the Serial Converter Units.
 - Ω Σ-7-Series AC Servo Drive Peripheral Device Selection Manual (Manual No.: SIEP S800001 32)
- 3. Refer to the following section for information on Servomotor Main Circuit Cables and Encoder Cables.
- Connections to Linear Encoder from Magnescale Co., Ltd.

■ SL7□0 Linear Encoder and PL101-RY Sensor Head with Interpolator

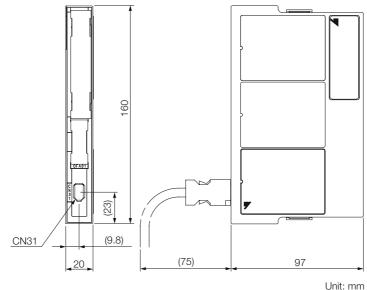

* Refer to the following section for information on cables to connect Fully-Closed Modules and Linear Encoders.

SR-75, SR-77, SR-85, and SR-87 Linear Encoders

* To connect the SERVOPACK and Linear Encoder, use a CH33-xxDG Cable from Magnescale Co., Ltd. (This Cable has connectors designed for use with Yaskawa products.)


RU77-4096ADF/RU77-4096AFFT01 Absolute Rotary Encoders

* To connect the SERVOPACK and Rotary Encoder, use a CE28-Series Extension Cable for RU77 from Magnescale Co., Ltd. Note: The RU77 is a single-turn absolute rotary encoder.


Connections to Linear Encoders from Mitutoyo Corporation

■ ST78□A Linear Encoders

* Refer to the following section for information on cables to connect Fully-Closed Modules and Linear Encoders.

External Dimensions

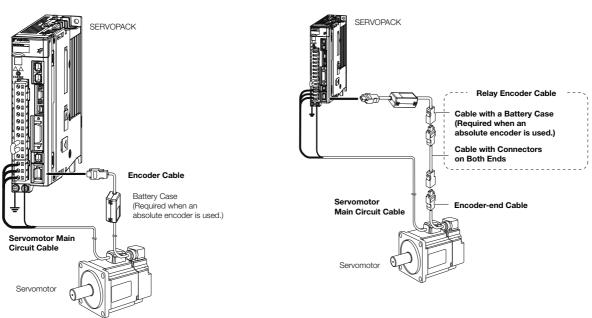
Approx. Mass: 0.1 kg

Connectors

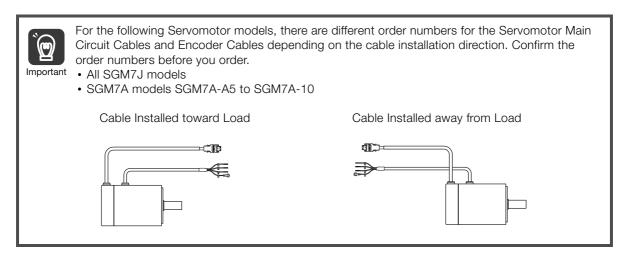
Device Label	Model	Number of Pins	Manufacturer
CN31	3E106-0220KV	6	Sumitomo 3M Ltd.

Note: The above connectors or their equivalents are used for the Fully-Closed Module.

Cables and Peripheral Devices


Cables for SGM7J and SGM7A Rotary Servomotors276
Cables for SGM7P Rotary Servomotors284
Cables for SGM7G Rotary Servomotors288
Cables for Direct Drive Servomotors295
Cables for Linear Servomotors
Serial Converter Units
Recommended Linear Encoders
Cables for SERVOPACKs316
Peripheral Devices

Cables for SGM7J and SGM7A Rotary Servomotors


System Configurations

Encoder Cable of 20 m or Less

The cables shown below are required to connect a Servomotor to a SERVOPACK.

- Note: 1. Cables with connectors on both ends that are compliant with an IP67 protective structure and European Safety Standards are not available from Yaskawa for the SGM7A-15A to SGM7A-30A Servomotors. You must make such a cable yourself. Use the Connectors specified by Yaskawa for these Servomotors. (These Connectors are compliant with the standards.) Yaskawa does not specify what wiring materials to use.
 - 2. If the cable length exceeds 20 m, be sure to use a Relay Encoder Cable.
 - 3. If you use a Servomotor Main Circuit Cable that exceeds 20 m, the intermittent duty zone in the torquemotor speed characteristics will become smaller because the voltage drop increases.
 - 4. Refer to the following manual for the following information.
 - · Cable dimensional drawings and cable connection specifications
 - Order numbers and specifications of individual connectors for cables
 - · Order numbers and specifications for wiring materials
 - Device Selection Manual (Manual No.: SIEP S800001 32)

Encoder Cable of 30 m to 50 m (Relay Cable)

Servomotor Main Circuit Cables

Servomotor		Length	Order N	Number	
Model	Name	(L)	Standard Cable	Flexible Cable*	Appearance
		3 m	JZSP-C7M10F-03-E	JZSP-C7M12F-03-E	
		5 m	JZSP-C7M10F-05-E	JZSP-C7M12F-05-E	-
SGM7J-A5 to -C2		10 m	JZSP-C7M10F-10-E	JZSP-C7M12F-10-E	-
SGM7A-A5 to -C2		15 m	JZSP-C7M10F-15-E	JZSP-C7M12F-15-E	-
		20 m	JZSP-C7M10F-20-E	JZSP-C7M12F-20-E	-
50 W to 150 W		30 m	JZSP-C7M10F-30-E	JZSP-C7M12F-30-E	
		40 m	JZSP-C7M10F-40-E	JZSP-C7M12F-40-E	
		50 m	JZSP-C7M10F-50-E	JZSP-C7M12F-50-E	
	F 0	3 m	JZSP-C7M20F-03-E	JZSP-C7M22F-03-E	
	For Servo- motors with-	5 m	JZSP-C7M20F-05-E	JZSP-C7M22F-05-E	
SGM7J-02 to -06	out Holding	10 m	JZSP-C7M20F-10-E	JZSP-C7M22F-10-E	Motor end SERVOPACK end
SGM7A-02 to -06	Brakes	15 m	JZSP-C7M20F-15-E	JZSP-C7M22F-15-E	L1
		20 m	JZSP-C7M20F-20-E	JZSP-C7M22F-20-E	
200 W to 600 W	Cable	30 m	JZSP-C7M20F-30-E	JZSP-C7M22F-30-E	
	installed	40 m	JZSP-C7M20F-40-E	JZSP-C7M22F-40-E	
	toward load	50 m	JZSP-C7M20F-50-E	JZSP-C7M22F-50-E	
	-	3 m	JZSP-C7M30F-03-E	JZSP-C7M32F-03-E	
		5 m	JZSP-C7M30F-05-E	JZSP-C7M32F-05-E	
SGM7J-08		10 m	JZSP-C7M30F-10-E	JZSP-C7M32F-10-E	
SGM7A-08 and -10		15 m	JZSP-C7M30F-15-E	JZSP-C7M32F-15-E	
		20 m	JZSP-C7M30F-20-E	JZSP-C7M32F-20-E	
750 W, 1.0 kW		30 m	JZSP-C7M30F-30-E	JZSP-C7M32F-30-E	
		40 m	JZSP-C7M30F-40-E	JZSP-C7M32F-40-E	
		50 m	JZSP-C7M30F-50-E	JZSP-C7M32F-50-E	
		3 m	JZSP-C7M10G-03-E	JZSP-C7M12G-03-E	
		5 m	JZSP-C7M10G-05-E	JZSP-C7M12G-05-E	
SGM7J-A5 to -C2		10 m	JZSP-C7M10G-10-E	JZSP-C7M12G-10-E	
SGM7A-A5 to -C2		15 m	JZSP-C7M10G-15-E	JZSP-C7M12G-15-E	
		20 m	JZSP-C7M10G-20-E	JZSP-C7M12G-20-E	
50 W to 150 W		30 m	JZSP-C7M10G-30-E	JZSP-C7M12G-30-E	
		40 m	JZSP-C7M10G-40-E	JZSP-C7M12G-40-E	
		50 m	JZSP-C7M10G-50-E	JZSP-C7M12G-50-E	
	For Servo-	3 m	JZSP-C7M20G-03-E	JZSP-C7M22G-03-E	
	motors with-	5 m	JZSP-C7M20G-05-E	JZSP-C7M22G-05-E	
SGM7J-02 to -06	out Holding	10 m	JZSP-C7M20G-10-E	JZSP-C7M22G-10-E	SERVOPACK end Motor end
SGM7A-02 to -06	Brakes	15 m	JZSP-C7M20G-15-E	JZSP-C7M22G-15-E	
	Cable	20 m	JZSP-C7M20G-20-E	JZSP-C7M22G-20-E	
200 W to 600 W	installed	30 m	JZSP-C7M20G-30-E	JZSP-C7M22G-30-E	
	away from	40 m	JZSP-C7M20G-40-E	JZSP-C7M22G-40-E	
	load	50 m	JZSP-C7M20G-50-E	JZSP-C7M22G-50-E	
		3 m	JZSP-C7M30G-03-E	JZSP-C7M32G-03-E	
		5 m	JZSP-C7M30G-05-E	JZSP-C7M32G-05-E	
SGM7J-08		10 m	JZSP-C7M30G-10-E	JZSP-C7M32G-10-E	
SGM7A-08 and -10		15 m	JZSP-C7M30G-15-E	JZSP-C7M32G-15-E	
		20 m	JZSP-C7M30G-20-E	JZSP-C7M32G-20-E	
750 W, 1.0 kW		30 m	JZSP-C7M30G-30-E	JZSP-C7M32G-30-E	
		40 m	JZSP-C7M30G-40-E	JZSP-C7M32G-40-E	
		50 m	JZSP-C7M30G-50-E	JZSP-C7M32G-50-E	

 \ast Use Flexible Cables for moving parts of machines, such as robots.

Cables and Peripheral Devices Cables for SGM7J and SGM7A Rotary Servomotors

Servomotor	Name	Length		Number	Appearance		
Model	Name	(L)	Standard Cable	Flexible Cable*	Appearance		
		3 m	JZSP-C7M13F-03-E	JZSP-C7M14F-03-E			
		5 m	JZSP-C7M13F-05-E	JZSP-C7M14F-05-E			
SGM7J-A5 to -C2		10 m	JZSP-C7M13F-10-E	JZSP-C7M14F-10-E			
SGM7A-A5 to -C2		15 m	JZSP-C7M13F-15-E	JZSP-C7M14F-15-E			
		20 m	JZSP-C7M13F-20-E	JZSP-C7M14F-20-E			
50 W to 150 W		30 m	JZSP-C7M13F-30-E	JZSP-C7M14F-30-E	-		
		40 m	JZSP-C7M13F-40-E	JZSP-C7M14F-40-E	-		
		50 m	JZSP-C7M13F-50-E	JZSP-C7M14F-50-E	-		
		3 m	JZSP-C7M23F-03-E	JZSP-C7M24F-03-E	-		
	For Servo- motors with	5 m	JZSP-C7M23F-05-E	JZSP-C7M24F-05-E			
SGM7J-02 to -06	Holding	10 m	JZSP-C7M23F-10-E	JZSP-C7M24F-10-E	Motor end SERVOPACK er		
SGM7A-02 to -06	Brakes	15 m	JZSP-C7M23F-15-E	JZSP-C7M24F-15-E			
		20 m	JZSP-C7M23F-20-E	JZSP-C7M24F-20-E			
200 W to 600 W	Cable	30 m	JZSP-C7M23F-30-E	JZSP-C7M24F-30-E			
	installed	40 m	JZSP-C7M23F-40-E	JZSP-C7M24F-40-E			
	toward load	50 m	JZSP-C7M23F-50-E	JZSP-C7M24F-50-E			
	-	3 m	JZSP-C7M33F-03-E	JZSP-C7M34F-03-E			
		5 m	JZSP-C7M33F-05-E	JZSP-C7M34F-05-E	-		
SGM7J-08		10 m	JZSP-C7M33F-10-E	JZSP-C7M34F-10-E			
SGM7A-08 and -10		15 m	JZSP-C7M33F-15-E	JZSP-C7M34F-15-E			
		20 m	JZSP-C7M33F-20-E	JZSP-C7M34F-20-E	-		
′50 W, 1.0 kW		30 m	JZSP-C7M33F-30-E	JZSP-C7M34F-30-E	-		
		40 m	JZSP-C7M33F-40-E	JZSP-C7M34F-40-E			
		50 m	JZSP-C7M33F-50-E	JZSP-C7M34F-50-E	-		
		3 m	JZSP-C7M13G-03-E	JZSP-C7M14G-03-E			
		5 m	JZSP-C7M13G-05-E	JZSP-C7M14G-05-E			
SGM7J-A5 to -C2		10 m	JZSP-C7M13G-10-E	JZSP-C7M14G-10-E			
SGM7A-A5 to -C2		15 m	JZSP-C7M13G-15-E	JZSP-C7M14G-15-E			
		20 m	JZSP-C7M13G-20-E	JZSP-C7M14G-20-E			
50 W to 150 W		30 m	JZSP-C7M13G-30-E	JZSP-C7M14G-30-E			
		40 m	JZSP-C7M13G-40-E	JZSP-C7M14G-40-E			
		50 m	JZSP-C7M13G-50-E	JZSP-C7M14G-50-E			
	For Servo-	3 m	JZSP-C7M23G-03-E	JZSP-C7M24G-03-E			
	motors with	5 m	JZSP-C7M23G-05-E	JZSP-C7M24G-05-E]		
SGM7J-02 to -06	Holding	10 m	JZSP-C7M23G-10-E	JZSP-C7M24G-10-E	SERVOPACK end Motor end		
SGM7A-02 to -06	Brakes	15 m	JZSP-C7M23G-15-E	JZSP-C7M24G-15-E			
	Cable	20 m	JZSP-C7M23G-20-E	JZSP-C7M24G-20-E			
200 W to 600 W	installed	30 m	JZSP-C7M23G-30-E	JZSP-C7M24G-30-E) 🏹		
	away from	40 m	JZSP-C7M23G-40-E	JZSP-C7M24G-40-E]		
	load	50 m	JZSP-C7M23G-50-E	JZSP-C7M24G-50-E]		
		3 m	JZSP-C7M33G-03-E	JZSP-C7M34G-03-E			
		5 m	JZSP-C7M33G-05-E	JZSP-C7M34G-05-E			
SGM7J-08		10 m	JZSP-C7M33G-10-E	JZSP-C7M34G-10-E			
SGM7A-08 and -10		15 m	JZSP-C7M33G-15-E	JZSP-C7M34G-15-E			
		20 m	JZSP-C7M33G-20-E	JZSP-C7M34G-20-E			
750 W, 1.0 kW		30 m	JZSP-C7M33G-30-E	JZSP-C7M34G-30-E			
		40 m	JZSP-C7M33G-40-E	JZSP-C7M34G-40-E			
]	50 m	JZSP-C7M33G-50-E	JZSP-C7M34G-50-E	1		

* Use Flexible Cables for moving parts of machines, such as robots.

Servo-		Connector	Length	Order N	Number		
motor Model	Name	Specifica- tions	(L)	Standard Cable	Flexible Cable [*]	Appearance	
			3 m	JZSP-UVA101-03-E	JZSP-UVA121-03-E		
			5 m	JZSP-UVA101-05-E	JZSP-UVA121-05-E	SERVOPACK Motor end	
		Straight	10 m	JZSP-UVA101-10-E	JZSP-UVA121-10-E		
			15 m	JZSP-UVA101-15-E	JZSP-UVA121-15-E		
	For Servomo- tors without		20 m	JZSP-UVA101-20-E	JZSP-UVA121-20-E		
	Holding Brakes		3 m	JZSP-UVA102-03-E	JZSP-UVA122-03-E		
			5 m	JZSP-UVA102-05-E	JZSP-UVA122-05-E	SERVOPACK Motor end	
		Right-angle	10 m	JZSP-UVA102-10-E	JZSP-UVA122-10-E		
SGM7A-			15 m	JZSP-UVA102-15-E	JZSP-UVA122-15-E		
3GM7A- 15A			20 m	JZSP-UVA102-20-E	JZSP-UVA122-20-E		
1071			3 m	JZSP-UVA151-03-E	JZSP-UVA161-03-E		
1.5 kW			5 m	JZSP-UVA151-05-E	JZSP-UVA161-05-E	SERVOPACK Motor end	
		Straight	10 m	JZSP-UVA151-10-E	JZSP-UVA161-10-E		
			15 m	JZSP-UVA151-15-E	JZSP-UVA161-15-E		
	For Servomo-		20 m	JZSP-UVA151-20-E	JZSP-UVA161-20-E		
	tors with Hold- ing Brakes		3 m	JZSP-UVA152-03-E	JZSP-UVA162-03-E		
	ing Drakes	Right-angle	5 m	JZSP-UVA152-05-E	JZSP-UVA162-05-E	SERVOPACK Motor end	
			10 m	JZSP-UVA152-10-E	JZSP-UVA162-10-E		
			15 m	JZSP-UVA152-15-E	JZSP-UVA162-15-E		
			20 m	JZSP-UVA152-20-E	JZSP-UVA162-20-E		
			3 m	JZSP-UVA301-03-E	JZSP-UVA321-03-E		
			5 m	JZSP-UVA301-05-E	JZSP-UVA321-05-E	SERVOPACK Motor end	
		Straight	10 m	JZSP-UVA301-10-E	JZSP-UVA321-10-E		
			15 m	JZSP-UVA301-15-E	JZSP-UVA321-15-E		
	For Servomo-		20 m	JZSP-UVA301-20-E	JZSP-UVA321-20-E		
	tors without Holding Brakes		3 m	JZSP-UVA302-03-E	JZSP-UVA322-03-E		
			5 m	JZSP-UVA302-05-E	JZSP-UVA322-05-E	SERVOPACK Motor end end	
		Right-angle	10 m	JZSP-UVA302-10-E	JZSP-UVA322-10-E		
SGM7A-			15 m	JZSP-UVA302-15-E	JZSP-UVA322-15-E		
20A			20 m	JZSP-UVA302-20-E	JZSP-UVA322-20-E		
2.0 kW			3 m	JZSP-UVA351-03-E	JZSP-UVA361-03-E		
2.0 KVV			5 m	JZSP-UVA351-05-E	JZSP-UVA361-05-E	SERVOPACK Motor end	
		Straight	10 m	JZSP-UVA351-10-E	JZSP-UVA361-10-E		
	For Servomo-		15 m	JZSP-UVA351-15-E	JZSP-UVA361-15-E		
	tors with Hold-		20 m	JZSP-UVA351-20-E	JZSP-UVA361-20-E		
	ing Brakes		3 m	JZSP-UVA352-03-E	JZSP-UVA362-03-E		
			5 m	JZSP-UVA352-05-E	JZSP-UVA362-05-E	SERVOPACK Motor end	
		Right-angle	10 m	JZSP-UVA352-10-E	JZSP-UVA362-10-E		
			15 m	JZSP-UVA352-15-E	JZSP-UVA362-15-E		
			20 m	JZSP-UVA352-20-E	JZSP-UVA362-20-E		

 \ast Use Flexible Cables for moving parts of machines, such as robots.

Cables and Peripheral Devices Cables for SGM7J and SGM7A Rotary Servomotors

Servo-		Connector	Longth	Order I	Number		
motor Model	Name	Specifica- tions	Length (L)	Standard Cable	Flexible Cable*	Appearance	
			3 m	JZSP-UVA501-03-E	JZSP-UVA521-03-E		
			5 m	JZSP-UVA501-05-E	JZSP-UVA521-05-E	SERVOPACK Motor end	
	F	Straight	10 m	JZSP-UVA501-10-E	JZSP-UVA521-10-E	_ 	
			15 m	JZSP-UVA501-15-E	JZSP-UVA521-15-E		
	For Servomo- tors without		20 m	JZSP-UVA501-20-E	JZSP-UVA521-20-E		
	Holding Brakes		3 m	JZSP-UVA502-03-E	JZSP-UVA522-03-E		
			5 m	JZSP-UVA502-05-E	JZSP-UVA522-05-E	SERVOPACK Motor end	
		Right-angle	10 m	JZSP-UVA502-10-E	JZSP-UVA522-10-E		
SGM7A-			15 m	JZSP-UVA502-15-E	JZSP-UVA522-15-E		
25A			20 m	JZSP-UVA502-20-E	JZSP-UVA522-20-E		
			3 m	JZSP-UVA551-03-E	JZSP-UVA561-03-E		
2.5 kW			5 m	JZSP-UVA551-05-E	JZSP-UVA561-05-E	SERVOPACK Motor end end I	
		Straight	10 m	JZSP-UVA551-10-E	JZSP-UVA561-10-E		
			15 m	JZSP-UVA551-15-E	JZSP-UVA561-15-E		
	For Servomo- tors with Hold-		20 m	JZSP-UVA551-20-E	JZSP-UVA561-20-E		
	ing Brakes	Right-angle	3 m	JZSP-UVA552-03-E	JZSP-UVA562-03-E	SERVOPACK Motor end	
	ing Draitee		5 m	JZSP-UVA552-05-E	JZSP-UVA562-05-E		
			10 m	JZSP-UVA552-10-E	JZSP-UVA562-10-E		
			15 m	JZSP-UVA552-15-E	JZSP-UVA562-15-E		
			20 m	JZSP-UVA552-20-E	JZSP-UVA562-20-E		
			3 m	JZSP-UVA601-03-E	JZSP-UVA621-03-E		
			5 m	JZSP-UVA601-05-E	JZSP-UVA621-05-E	SERVOPACK Motor end	
		Straight	10 m	JZSP-UVA601-10-E	JZSP-UVA621-10-E		
			15 m	JZSP-UVA601-15-E	JZSP-UVA621-15-E		
	For Servomo- tors without		20 m	JZSP-UVA601-20-E	JZSP-UVA621-20-E		
	Holding Brakes		3 m	JZSP-UVA602-03-E	JZSP-UVA622-03-E		
			5 m	JZSP-UVA602-05-E	JZSP-UVA622-05-E	SERVOPACK Motor end	
		Right-angle	10 m	JZSP-UVA602-10-E	JZSP-UVA622-10-E		
SGM7A-			15 m	JZSP-UVA602-15-E	JZSP-UVA622-15-E		
30A			20 m	JZSP-UVA602-20-E	JZSP-UVA622-20-E		
			3 m	JZSP-UVA651-03-E	JZSP-UVA661-03-E		
3.0 kW			5 m	JZSP-UVA651-05-E	JZSP-UVA661-05-E	SERVOPACK Motor end	
		Straight	10 m	JZSP-UVA651-10-E	JZSP-UVA661-10-E		
			15 m	JZSP-UVA651-15-E	JZSP-UVA661-15-E		
	For Servomo-		20 m	JZSP-UVA651-20-E	JZSP-UVA661-20-E		
	tors with Hold- ing Brakes		3 m	JZSP-UVA652-03-E	JZSP-UVA662-03-E		
			5 m	JZSP-UVA652-05-E	JZSP-UVA662-05-E	SERVOPACK Motor end	
		Right-angle	10 m	JZSP-UVA652-10-E	JZSP-UVA662-10-E	ena	
			15 m	JZSP-UVA652-15-E	JZSP-UVA662-15-E		
			20 m	JZSP-UVA652-20-E	JZSP-UVA662-20-E	_	

* Use Flexible Cables for moving parts of machines, such as robots.

Servo-		Connector	Length	Order N	Number	
motor Model	Name	Specifica- tions	(L)	Standard Cable	Flexible Cable*	Appearance
			3 m	JZSP-UVA701-03-E	JZSP-UVA721-03-E	
			5 m	JZSP-UVA701-05-E	JZSP-UVA721-05-E	SERVOPACK Motor end
		Straight	10 m	JZSP-UVA701-10-E	JZSP-UVA721-10-E	
			15 m	JZSP-UVA701-15-E	JZSP-UVA721-15-E	
	For Servomo- tors without		20 m	JZSP-UVA701-20-E	JZSP-UVA721-20-E	
	Holding Brakes		3 m	JZSP-UVA702-03-E	JZSP-UVA722-03-E	
	· · · · · · · · · · · · · · · · · · ·		5 m	JZSP-UVA702-05-E	JZSP-UVA722-05-E	SERVOPACK Motor end
		Right-angle	10 m	JZSP-UVA702-10-E	JZSP-UVA722-10-E	
SGM7A-			15 m	JZSP-UVA702-15-E	JZSP-UVA722-15-E	
40A, 50A			20 m	JZSP-UVA702-20-E	JZSP-UVA722-20-E	
4.0 kW			3 m	JZSP-UVA751-03-E	JZSP-UVA761-03-E	
4.0 KW 5.0 kW		Straight	5 m	JZSP-UVA751-05-E	JZSP-UVA761-05-E	SERVOPACK Motor end
			10 m	JZSP-UVA751-10-E	JZSP-UVA761-10-E	
	For Servomo- tors with Hold- ing Brakes		15 m	JZSP-UVA751-15-E	JZSP-UVA761-15-E	
			20 m	JZSP-UVA751-20-E	JZSP-UVA761-20-E	
		d-	3 m	JZSP-UVA752-03-E	JZSP-UVA762-03-E	
	ing blakes		5 m	JZSP-UVA752-05-E	JZSP-UVA762-05-E	SERVOPACK Motor end
		Right-angle	10 m	JZSP-UVA752-10-E	JZSP-UVA762-10-E	
			15 m	JZSP-UVA752-15-E	JZSP-UVA762-15-E	
			20 m	JZSP-UVA752-20-E	JZSP-UVA762-20-E	
			3 m	JZSP-UVA901-03-E	JZSP-UVA921-03-E	
			5 m	JZSP-UVA901-05-E	JZSP-UVA921-05-E	SERVOPACK Motor end
		Straight	10 m	JZSP-UVA901-10-E	JZSP-UVA921-10-E	
SGM7A-			15 m	JZSP-UVA901-15-E	JZSP-UVA921-15-E	
70A	Eor Servomo-		20 m	JZSP-UVA901-20-E	JZSP-UVA921-20-E	
	Holding Brakes		3 m	JZSP-UVA902-03-E	JZSP-UVA922-03-E	
7.0 kW	<u> </u>		5 m	JZSP-UVA902-05-E	JZSP-UVA922-05-E	SERVOPACK Motor end
		Right-angle	10 m	JZSP-UVA902-10-E	JZSP-UVA922-10-E	
			15 m	JZSP-UVA902-15-E	JZSP-UVA922-15-E	
			20 m	JZSP-UVA902-20-E	JZSP-UVA922-20-E	

* Use Flexible Cables for moving parts of machines, such as robots.

Encoder Cables of 20 m or Less

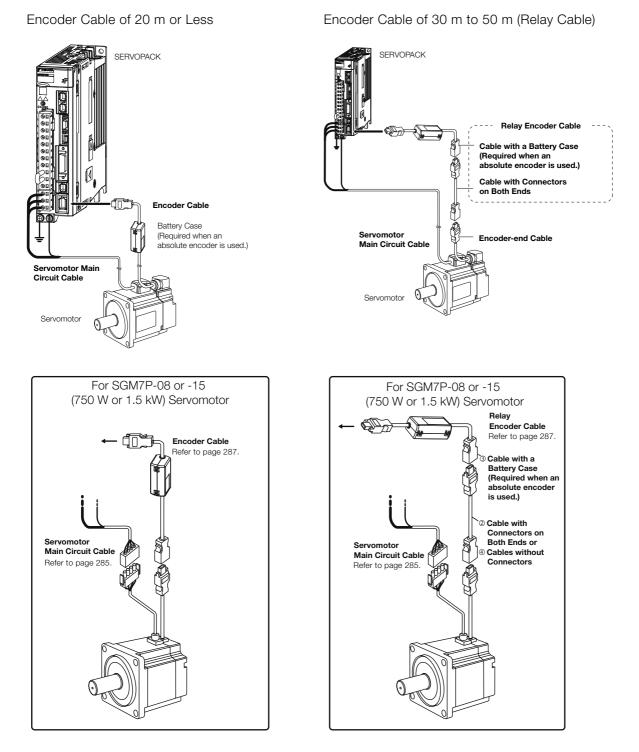
		Length	Order N	Number	
Servomotor Model	Name	(L)	Standard Cable	Flexible Cable ^{*1}	Appearance
	For incremen-	3 m	JZSP-C7PI0D-03-E	JZSP-C7PI2D-03-E	
	tal encoder	5 m	JZSP-C7PI0D-05-E	JZSP-C7PI2D-05-E	Encoder end SERVOPACK
	Cable	10 m	JZSP-C7PI0D-10-E	JZSP-C7PI2D-10-E	
	installed	15 m	JZSP-C7PI0D-15-E	JZSP-C7PI2D-15-E	
	toward load	20 m	JZSP-C7PI0D-20-E	JZSP-C7PI2D-20-E	-
	For incremen-	3 m	JZSP-C7PI0E-03-E	JZSP-C7PI2E-03-E	
	tal encoder	5 m	JZSP-C7PI0E-05-E	JZSP-C7PI2E-05-E	SERVOPACK Encoder end
	Cable	10 m	JZSP-C7PI0E-10-E	JZSP-C7PI2E-10-E	
	installed away	15 m	JZSP-C7PI0E-15-E	JZSP-C7PI2E-15-E	
	from load	20 m	JZSP-C7PI0E-20-E	JZSP-C7PI2E-20-E	
SGM7J-A5 to -08 50 W to 750 W	For absolute	3 m	JZSP-C7PA0D-03-E	JZSP-C7PA2D-03-E	
	encoder: With Battery	5 m	JZSP-C7PA0D-05-E	JZSP-C7PA2D-05-E	SERVOPACK Encoder end
SGM7A-A5 to -10	Case ^{*2}	10 m	JZSP-C7PA0D-10-E	JZSP-C7PA2D-10-E	
50 W to 1.0 kW		15 m	JZSP-C7PA0D-15-E	JZSP-C7PA2D-15-E	
	Cable installed toward load	20 m	JZSP-C7PA0D-20-E	JZSP-C7PA2D-20-E	(battery included)
	For absolute	3 m	JZSP-C7PA0E-03-E	JZSP-C7PA2E-03-E	
	encoder: With Battery Case ^{*2} Cable installed away from load	5 m	JZSP-C7PA0E-05-E	JZSP-C7PA2E-05-E	SERVOPACK Encoder end
		10 m	JZSP-C7PA0E-10-E	JZSP-C7PA2E-10-E	end L
		15 m	JZSP-C7PA0E-15-E	JZSP-C7PA2E-15-E	
		20 m	JZSP-C7PA0E-20-E	JZSP-C7PA2E-20-E	Battery Case (battery included)
	Inoniniodad	3 m	JZSP-CVP01-03-E	JZSP-CVP11-03-E	
		5 m	JZSP-CVP01-05-E	JZSP-CVP11-05-E	SERVOPACK _ Encoder end
		10 m	JZSP-CVP01-10-E	JZSP-CVP11-10-E	
		15 m	JZSP-CVP01-15-E	JZSP-CVP11-15-E	
	For incremen-	20 m	JZSP-CVP01-20-E	JZSP-CVP11-20-E	-
	tal encoder	3 m	JZSP-CVP02-03-E	JZSP-CVP12-03-E	
		5 m	JZSP-CVP02-05-E	JZSP-CVP12-05-E	
		10 m	JZSP-CVP02-10-E	JZSP-CVP12-10-E	
		15 m	JZSP-CVP02-15-E	JZSP-CVP12-15-E	
SGM7A-15 to -70		20 m	JZSP-CVP02-20-E	JZSP-CVP12-20-E	
1.5 kW to 7.0 kW		3 m	JZSP-CVP06-03-E	JZSP-CVP26-03-E	SERVOPACK _ Encoder end
		5 m	JZSP-CVP06-05-E	JZSP-CVP26-05-E	
		10 m	JZSP-CVP06-10-E	JZSP-CVP26-10-E	Battery Case
	For absolute	15 m	JZSP-CVP06-15-E	JZSP-CVP26-15-E	(battery included)
	encoder: With Battery	20 m	JZSP-CVP06-20-E	JZSP-CVP26-20-E	
	Case ^{*2}	3 m	JZSP-CVP07-03-E	JZSP-CVP27-03-E	SERVOPACK _ Encoder end
	0000	5 m	JZSP-CVP07-05-E	JZSP-CVP27-05-E	
		10 m	JZSP-CVP07-10-E	JZSP-CVP27-10-E	Battery Case
		15 m	JZSP-CVP07-15-E	JZSP-CVP27-15-E	(battery included)
		20 m	JZSP-CVP07-20-E	JZSP-CVP27-20-E	

 $\ast 1.$ Use Flexible Cables for moving parts of machines, such as robots.

*2. If a battery is connected to the host controller, the Battery Case is not required. If so, use a cable for incremental encoders.

Relay Encoder Cable of 30 m to 50 m

Servomotor Model	Name	Length (L)	Order Number	Appearance
	Encoder-end Cable (for incremental or absolute encoder) Cable installed toward load	0.3 m	JZSP-C7PRCD-E	Encoder end SERVOPACK end
SGM7J-A5 to -08 50 W to 750 W	Encoder-end Cable (for incremental or absolute encoder) Cable installed away from load	0.3 m	JZSP-C7PRCE-E	
SGM7A-A5 to -10	Cables with Connectors on	30 m	JZSP-UCMP00-30-E	SERVOPACK end Encoder end
50 W to 1.0 kW	Both Ends (for incremental	40 m	JZSP-UCMP00-40-E	
	or absolute encoder)	50 m	JZSP-UCMP00-50-E	
	Cable with a Battery Case (Required when an absolute encoder is used.*)	0.3 m	JZSP-CSP12-E	SERVOPACK end Encoder end
	Encoder-end Cable (for incremental or absolute	0.3 m	JZSP-CVP01-E	SERVOPACK end Encoder end
	encoder)	0.5 11	JZSP-CVP02-E	SERVOPACK end Encoder end
SGM7A-15 to -70 1.5 kW to 7.0 kW	Cables with Connectors on	30 m	JZSP-UCMP00-30-E	SERVOPACK end Encoder end
	Both Ends (for incremental	40 m	JZSP-UCMP00-40-E	
	or absolute encoder)	50 m	JZSP-UCMP00-50-E	
	Cable with a Battery Case (Required when an absolute encoder is used.*)	0.3 m	JZSP-CSP12-E	SERVOPACK end Encoder end


* This Cable is not required if a battery is connected to the host controller.

Cables and Peripheral Devices

Cables for SGM7P Rotary Servomotors

System Configurations

The cables shown below are required to connect a Servomotor to a SERVOPACK.

Note: 1. If the cable length exceeds 20 m, be sure to use a Relay Encoder Cable.

- 2. If you use a Servomotor Main Circuit Cable that exceeds 20 m, the intermittent duty zone in the torquemotor speed characteristics will become smaller because the voltage drop increases.
- 3. Refer to the following manual for the following information.
 - Cable dimensional drawings and cable connection specifications
 - Order numbers and specifications of individual connectors for cables
- · Order numbers and specifications for wiring materials
- Ω Σ-7-Series AC Servo Drive Peripheral Device Selection Manual (Manual No.: SIEP S800001 32)

Servomotor Main Circuit Cables

Servomotor	Name	Length	Order 1	Number	A
Model	Name	(L)	Standard Cable	Flexible Cable [*]	Appearance
		3 m	JZSP-CSM01-03-E	JZSP-CSM21-03-E	
		5 m	JZSP-CSM01-05-E	JZSP-CSM21-05-E	
		10 m	JZSP-CSM01-10-E	JZSP-CSM21-10-E	
SGM7P-01		15 m	JZSP-CSM01-15-E	JZSP-CSM21-15-E	
100 W		20 m	JZSP-CSM01-20-E	JZSP-CSM21-20-E	
100 11		30 m	JZSP-CSM01-30-E	JZSP-CSM21-30-E	
		40 m	JZSP-CSM01-40-E	JZSP-CSM21-40-E	SERVOPACK Motor end
		50 m	JZSP-CSM01-50-E	JZSP-CSM21-50-E	end L
		3 m	JZSP-CSM02-03-E	JZSP-CSM22-03-E	
		5 m	JZSP-CSM02-05-E	JZSP-CSM22-05-E	
SGM7P-02 or		10 m	JZSP-CSM02-10-E	JZSP-CSM22-10-E	
-04		15 m	JZSP-CSM02-15-E	JZSP-CSM22-15-E	
	For Servo-	20 m	JZSP-CSM02-20-E	JZSP-CSM22-20-E	
200 W or 400 W	motors	30 m	JZSP-CSM02-30-E	JZSP-CSM22-30-E	
	without	40 m	JZSP-CSM02-40-E	JZSP-CSM22-40-E	
	Holding	50 m	JZSP-CSM02-50-E	JZSP-CSM22-50-E	
	Brakes	3 m	JZSP-CMM00-03-E	JZSP-CMM01-03-E	
		5 m	JZSP-CMM00-05-E	JZSP-CMM01-05-E	
001470 00		10 m	JZSP-CMM00-10-E	JZSP-CMM01-10-E	
SGM7P-08		15 m	JZSP-CMM00-15-E	JZSP-CMM01-15-E	
750 W		20 m	JZSP-CMM00-20-E	JZSP-CMM01-20-E	
		30 m	JZSP-CMM00-30-E	JZSP-CMM01-30-E	SERVOPACK Motor end
		40 m	JZSP-CMM00-40-E	JZSP-CMM01-40-E	
		50 m	JZSP-CMM00-50-E	JZSP-CMM01-50-E	
		3 m	JZSP-CMM20-03-E	-	
SGM7P-15		5 m	JZSP-CMM20-05-E	-	
		10 m	JZSP-CMM20-10-E	-	
1.5 kW		15 m	JZSP-CMM20-15-E	-]
		20 m	JZSP-CMM20-20-E	-	

* Use Flexible Cables for moving sections such as robot arms.

Cables and Peripheral Devices Cables for SGM7P Rotary Servomotors

Servomotor	Name	Length	Order I	Number	Annecrance
Model	Name	(L)	Standard Cable	Flexible Cable [*]	Appearance
		3 m	JZSP-CSM11-03-E	JZSP-CSM31-03-E	
		5 m	JZSP-CSM11-05-E	JZSP-CSM31-05-E	
		10 m	JZSP-CSM11-10-E	JZSP-CSM31-10-E	
SGM7P-01		15 m	JZSP-CSM11-15-E	JZSP-CSM31-15-E	
100 W		20 m	JZSP-CSM11-20-E	JZSP-CSM31-20-E	
		30 m	JZSP-CSM11-30-E	JZSP-CSM31-30-E	
		40 m	JZSP-CSM11-40-E	JZSP-CSM31-40-E	SERVOPACK Motor end
		50 m	JZSP-CSM11-50-E	JZSP-CSM31-50-E	
		3 m	JZSP-CSM12-03-E	JZSP-CSM32-03-E	
		5 m	JZSP-CSM12-05-E	JZSP-CSM32-05-E	
SGM7P-02 or		10 m	JZSP-CSM12-10-E	JZSP-CSM32-10-E	
-04	For Servo-	15 m	JZSP-CSM12-15-E	JZSP-CSM32-15-E	
		20 m	JZSP-CSM12-20-E	JZSP-CSM32-20-E	
200 W or 400 W	motors	30 m	JZSP-CSM12-30-E	JZSP-CSM32-30-E	
	with	40 m	JZSP-CSM12-40-E	JZSP-CSM32-40-E	
	Holding	50 m	JZSP-CSM12-50-E	JZSP-CSM32-50-E	
	Brakes	3 m	JZSP-CMM10-03-E	JZSP-CMM11-03-E	
		5 m	JZSP-CMM10-05-E	JZSP-CMM11-05-E	
		10 m	JZSP-CMM10-10-E	JZSP-CMM11-10-E	
SGM7P-08		15 m	JZSP-CMM10-15-E	JZSP-CMM11-15-E	
750 W		20 m	JZSP-CMM10-20-E	JZSP-CMM11-20-E	
100 11		30 m	JZSP-CMM10-30-E	JZSP-CMM11-30-E	SERVOPACK Motor end
		40 m	JZSP-CMM10-40-E	JZSP-CMM11-40-E	
		50 m	JZSP-CMM10-50-E	JZSP-CMM11-50-E	
		3 m	JZSP-CMM30-03-E	-	w r f
SGM7P-15		5 m	JZSP-CMM30-05-E	-	
		10 m	JZSP-CMM30-10-E	_	
1.5 kW		15 m	JZSP-CMM30-15-E	_	
		20 m	JZSP-CMM30-20-E	-	

* Use Flexible Cables for moving sections such as robot arms.

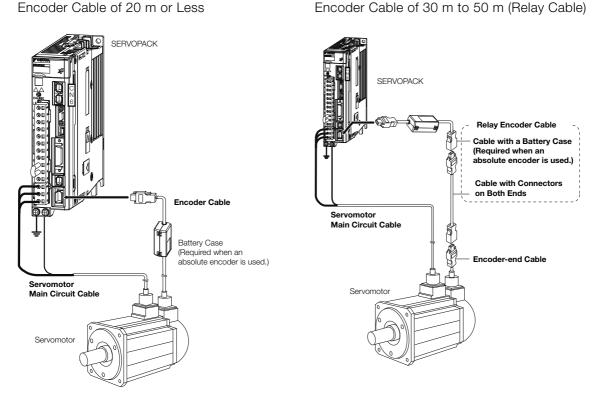
Encoder Cables of 20 m or Less

Servomotor	ervomotor Name		Order N	Number	Appearance
Model	Name	(L)	Standard Cable	Flexible Cable ^{*1}	Appearance
	For incremen-	3 m	JZSP-C7PI0D-03-E	JZSP-C7PI2D-03-E	
	tal encoder	5 m	JZSP-C7PI0D-05-E	JZSP-C7PI2D-05-E	Encoder end SERVOPACK
		10 m	JZSP-C7PI0D-10-E	JZSP-C7PI2D-10-E	
	Cable installed	15 m	JZSP-C7PI0D-15-E	JZSP-C7PI2D-15-E	
	toward load	20 m	JZSP-C7PI0D-20-E	JZSP-C7PI2D-20-E	
All SGM7P models	For absolute	3 m	JZSP-C7PA0D-03-E	JZSP-C7PA2D-03-E	
	encoder: With	5 m	JZSP-C7PA0D-05-E	JZSP-C7PA2D-05-E	SERVOPACK Encoder end
	Battery Case ^{*2}	10 m	JZSP-C7PA0D-10-E	JZSP-C7PA2D-10-E	
	Cable installed	15 m	JZSP-C7PA0D-15-E	JZSP-C7PA2D-15-E	Battery Case (battery included)
	toward load	20 m	JZSP-C7PA0D-20-E	JZSP-C7PA2D-20-E	

*1. Use Flexible Cables for moving sections such as robot arms.

*2. If a battery is connected to the host controller, the Battery Case is not required. If so, use a cable for incremental encoders.

Relay Encoder Cables of 30 m to 50 m


Servomotor Model	Name	Length (L)	Order Number	Appearance
	Encoder-end Cable (for incremental or absolute encoder) Cable installed toward load	0.3 m	JZSP-C7PRCD-E	
	Cables with Connectors on	30 m	JZSP-UCMP00-30-E	SERVOPACK end Encoder end
	Both Ends (for incremental or absolute encoder)	40 m	JZSP-UCMP00-40-E	
All SGM7P models		50 m	JZSP-UCMP00-50-E	
	Cable with a Battery Case (Required when an absolute encoder is used.*)	0.3 m	JZSP-CSP12-E	SERVOPACK end Encoder end

* This Cable is not required if a battery is connected to the host controller.

Cables for SGM7G Rotary Servomotors

System Configurations

The cables shown below are required to connect a Servomotor to a SERVOPACK.

- Note: 1. Cables with connectors on both ends that are compliant with an IP67 protective structure and European Safety Standards are not available from Yaskawa for the SGM7G Servomotors. You must make such a cable yourself. Use the Connectors specified by Yaskawa for these Servomotors. (These Connectors are compliant with the standards.) Yaskawa does not specify what wiring materials to use.
 - 2. If the cable length exceeds 20 m, be sure to use a Relay Encoder Cable.
 - 3. If you use a Servomotor Main Circuit Cable that exceeds 20 m, the intermittent duty zone in the torquemotor speed characteristics will become smaller because the voltage drop increases.
 - 4. Refer to the following manual for the following information.
 - · Cable dimensional drawings and cable connection specifications
 - Order numbers and specifications of individual connectors for cables
 - Order numbers and specifications for wiring materials
 - Ω Σ-7-Series AC Servo Drive Peripheral Device Selection Manual (Manual No.: SIEP S800001 32)

Servomotor Main Circuit Cables

Servomotor Model	Name	Length (L)	Order Number*	Appearance
		3 m	JZSP-CVM21-03-E	
		5 m	JZSP-CVM21-05-E	
		10 m	JZSP-CVM21-10-E	SERVOPACK end Motor end
	For Servomotors	15 m	JZSP-CVM21-15-E	■
	without Holding Brakes	20 m	JZSP-CVM21-20-E	
	2.0.00	30 m	JZSP-CVM21-30-E	
SGM7G-03		40 m	JZSP-CVM21-40-E	
to -05		50 m	JZSP-CVM21-50-E	
0.3 kW		3 m	JZSP-CVM41-03-E	
0.45 kW		5 m	JZSP-CVM41-05-E	
		10 m	JZSP-CVM41-10-E	SERVOPACK end Motor end
	For Servomotors	15 m	JZSP-CVM41-15-E	
	with Holding Brakes	20 m	JZSP-CVM41-20-E	
		30 m	JZSP-CVM41-30-E	
		40 m	JZSP-CVM41-40-E	-
		50 m	JZSP-CVM41-50-E	

* Flexible cables are provided as a standard feature.

Servo-		Connec-	Length	Order N	lumber		
motor Model	Name	tor Spec- ifications	(L)	Standard Cable	Flexible Cable	Appearance	
			3 m	JZSP-UVA101-03-E	JZSP-UVA121-03-E		
			5 m	JZSP-UVA101-05-E	JZSP-UVA121-05-E	SERVOPACK Motor end	
		Straight	10 m	JZSP-UVA101-10-E	JZSP-UVA121-10-E		
			15 m	JZSP-UVA101-15-E	JZSP-UVA121-15-E		
	For Servomotors without Holding		20 m	JZSP-UVA101-20-E	JZSP-UVA121-20-E		
	Brakes		3 m	JZSP-UVA102-03-E	JZSP-UVA122-03-E		
			5 m	JZSP-UVA102-05-E	JZSP-UVA122-05-E	SERVOPACK Motor end	
		Right-angle	10 m	JZSP-UVA102-10-E	JZSP-UVA122-10-E		
			15 m	JZSP-UVA102-15-E	JZSP-UVA122-15-E		
SGM7G- 09, -13			20 m	JZSP-UVA102-20-E	JZSP-UVA122-20-E		
09, -10			3 m	JZSP-UVA131-03-E	JZSP-UVA141-03-E	SERVOPACK Motor end	
850 W,			5 m	JZSP-UVA131-05-E	JZSP-UVA141-05-E		
1.3 kW	For Servomotors	Straight*1	10 m	JZSP-UVA131-10-E	JZSP-UVA141-10-E		
	with Holding Brakes		15 m	JZSP-UVA131-15-E	JZSP-UVA141-15-E	SERVOPACK Brake end	
	DIAKES		20 m	JZSP-UVA131-20-E	JZSP-UVA141-20-E		
	Note: Set of two		3 m	JZSP-UVA132-03-E	JZSP-UVA142-03-E	SERVOPACK Motor end	
	cables (Main Power Sup- ply Cable and Holding Brake Cable)		5 m	JZSP-UVA132-05-E	JZSP-UVA142-05-E		
		Right-angle *2	10 m	JZSP-UVA132-10-E	JZSP-UVA142-10-E		
			15 m	JZSP-UVA132-15-E	JZSP-UVA142-15-E	Brake end Motor end	
			20 m	JZSP-UVA132-20-E	JZSP-UVA142-20-E		

*1. The order number for the Main Power Supply Cable is JZSP-UVA101-DD-E (standard cable) or JZSP-UVA121-DD-E (flexible cable). The order number for the Holding Brake Cable is JZSP-CVB9-SMC3-E.

*2. The order number for the Main Power Supply Cable is JZSP-UVA102-□□-E (standard cable) or JZSP-UVA122-□□-E (flexible cable). The order number for the Holding Brake Cable is JZSP-CVB9-AMC3-E. Cables for SGM7G Rotary Servomotors

Servo-		Connec-	Length	Order N	Number	
motor Model	Name	tor Spec- ifications	(L)	Standard Cable	Flexible Cable	Appearance
			3 m	JZSP-UVA301-03-E	JZSP-UVA321-03-E	
			5 m	JZSP-UVA301-05-E	JZSP-UVA321-05-E	SERVOPACK Motor end
		Straight	10 m	JZSP-UVA301-10-E	JZSP-UVA321-10-E	
			15 m	JZSP-UVA301-15-E	JZSP-UVA321-15-E	
	For Servomotors without Holding		20 m	JZSP-UVA301-20-E	JZSP-UVA321-20-E	
	Brakes		3 m	JZSP-UVA302-03-E	JZSP-UVA322-03-E	
			5 m	JZSP-UVA302-05-E	JZSP-UVA322-05-E	SERVOPACK Motor end
		Right-angle	10 m	JZSP-UVA302-10-E	JZSP-UVA322-10-E	
			15 m	JZSP-UVA302-15-E	JZSP-UVA322-15-E	
SGM7G-			20 m	JZSP-UVA302-20-E	JZSP-UVA322-20-E	
20			3 m	JZSP-UVA331-03-E	JZSP-UVA341-03-E	SERVOPACK Motor end
1.8 kW		Straight ^{*1}	5 m	JZSP-UVA331-05-E	JZSP-UVA341-05-E	
	For Servomotors		10 m	JZSP-UVA331-10-E	JZSP-UVA341-10-E	C
	with Holding		15 m	JZSP-UVA331-15-E	JZSP-UVA341-15-E	SERVOPACK Brake end
	Brakes		20 m	JZSP-UVA331-20-E	JZSP-UVA341-20-E	
	Note: Set of two cables (Main Power Sup- ply Cable and Holding Brake Cable)		3 m	JZSP-UVA332-03-E	JZSP-UVA342-03-E	SERVOPACK Motor end
			5 m	JZSP-UVA332-05-E	JZSP-UVA342-05-E	
		Right-angle	10 m	JZSP-UVA332-10-E	JZSP-UVA342-10-E	Brake end Motor end
			15 m	JZSP-UVA332-15-E	JZSP-UVA342-15-E	
			20 m	JZSP-UVA332-20-E	JZSP-UVA342-20-E	

Note: If you need a Cable with a length of 20 m to 50 m, consider the operating conditions and specify a suitable length.

*1. The order number for the Main Power Supply Cable is JZSP-UVA301-DD-E (standard cable) or JZSP-UVA321-DD-E (flexible cable). The order number for the Holding Brake Cable is JZSP-CVB9-SMC3-E.

*2. The order number for the Main Power Supply Cable is JZSP-UVA302-□□-E (standard cable) or JZSP-UVA322-□□-E (flexible cable). The order number for the Holding Brake Cable is JZSP-CVB9-AMC3-E.

Servo-		Con-		Order N	Number	
motor Model	Name	nector Specifi- cations	Length (L)	Standard Cable	Flexible Cable	Appearance
			3 m	JZSP-UVA701-03-E	JZSP-UVA721-03-E	
			5 m	JZSP-UVA701-05-E	JZSP-UVA721-05-E	SERVOPACK Motor end
		Straight	10 m	JZSP-UVA701-10-E	JZSP-UVA721-10-E	
			15 m	JZSP-UVA701-15-E	JZSP-UVA721-15-E	
	For Servomo- tors without		20 m	JZSP-UVA701-20-E	JZSP-UVA721-20-E	
	Holding Brakes		3 m	JZSP-UVA702-03-E	JZSP-UVA722-03-E	
	C C	Distat	5 m	JZSP-UVA702-05-E	JZSP-UVA722-05-E	SERVOPACK Motor end
		Right- angle	10 m	JZSP-UVA702-10-E	JZSP-UVA722-10-E	
SGM7G-		angro	15 m	JZSP-UVA702-15-E	JZSP-UVA722-15-E	
30A,			20 m	JZSP-UVA702-20-E	JZSP-UVA722-20-E	
44A			3 m	JZSP-UVA731-03-E	JZSP-UVA741-03-E	SERVOPACK Motor end
2.9 kW.	For Servomo-		5 m	JZSP-UVA731-05-E	JZSP-UVA741-05-E	
2.3 kW, 4.4 kW	tors with Hold-	Straight *1	10 m	JZSP-UVA731-10-E	JZSP-UVA741-10-E	
	ing Brakes Note: Set of two	1	15 m	JZSP-UVA731-15-E	JZSP-UVA741-15-E	SERVOPACK Brake end
	cables		20 m	JZSP-UVA731-20-E	JZSP-UVA741-20-E	
	(Main Power Supply Cable and Holding Brake Cable)		3 m	JZSP-UVA732-03-E	JZSP-UVA742-03-E	SERVOPACK Motor end
			5 m	JZSP-UVA732-05-E	JZSP-UVA742-05-E	
		Right- angle ^{*2}	10 m	JZSP-UVA732-10-E	JZSP-UVA742-10-E	
		c. i gio	15 m	JZSP-UVA732-15-E	JZSP-UVA742-15-E	Brake end Motor end
			20 m	JZSP-UVA732-20-E	JZSP-UVA742-20-E	

Note: If you need a Cable with a length of 20 m to 50 m, consider the operating conditions and specify a suitable length.

*1. The order number for the Main Power Supply Cable is JZSP-UVA701-DD-E (standard cable) or JZSP-UVA721-DD-E (flexible cable). The order number for the Holding Brake Cable is JZSP-CVB9-SMC3-E.

*2. The order number for the Main Power Supply Cable is JZSP-UVA702-DD-E (standard cable) or JZSP-UVA702-DD-E (flexible cable). The order number for the Holding Brake Cable is JZSP-CVB9-AMC3-E.

Cables and Peripheral Devices

Cables for SGM7G Rotary Servomotors

Servo-		Con-		Order N	Number	
motor Model	Name	nector Specifi- cations	Length (L)	Standard Cable	Flexible Cable	Appearance
			3 m	JZSP-UVAA01-03-E	JZSP-UVAA21-03-E	
			5 m	JZSP-UVAA01-05-E	JZSP-UVAA21-05-E	SERVOPACK Motor end
		Straight	10 m	JZSP-UVAA01-10-E	JZSP-UVAA21-10-E	
			15 m	JZSP-UVAA01-15-E	JZSP-UVAA21-15-E	
	For Servomo- tors without		20 m	JZSP-UVAA01-20-E	JZSP-UVAA21-20-E	
	Holding Brakes		3 m	JZSP-UVAA02-03-E	JZSP-UVAA22-03-E	
	0	Dista	5 m	JZSP-UVAA02-05-E	JZSP-UVAA22-05-E	SERVOPACK Motor end
		Right- angle	10 m	JZSP-UVAA02-10-E	JZSP-UVAA22-10-E	
SGM7G-			15 m	JZSP-UVAA02-15-E	JZSP-UVAA22-15-E	
55A,			20 m	JZSP-UVAA02-20-E	JZSP-UVAA22-20-E	
75A			3 m	JZSP-UVAA31-03-E	JZSP-UVAA41-03-E	SERVOPACK Motor end
5.5 kW	For Servomo- tors with Hold-		5 m	JZSP-UVAA31-05-E	JZSP-UVAA41-05-E	
7.5 kW	ing Brakes	Straight *1	10 m	JZSP-UVAA31-10-E	JZSP-UVAA41-10-E	
	Note: Set of two	.1	15 m	JZSP-UVAA31-15-E	JZSP-UVAA41-15-E	SERVOPACK Brake end
	cables (Main		20 m	JZSP-UVAA31-20-E	JZSP-UVAA41-20-E	
	Power		3 m	JZSP-UVAA32-03-E	JZSP-UVAA42-03-E	SERVOPACK Motor end
	Supply Cable and Holding Brake Cable)		5 m	JZSP-UVAA32-05-E	JZSP-UVAA42-05-E	
		Right- angle ^{*2}	10 m	JZSP-UVAA32-10-E	JZSP-UVAA42-10-E	
		5.1.9.0	15 m	JZSP-UVAA32-15-E	JZSP-UVAA42-15-E	Brake end Motor end
			20 m	JZSP-UVAA32-20-E	JZSP-UVAA42-20-E	

Note: If you need a Cable with a length of 20 m to 50 m, consider the operating conditions and specify a suitable length.

*1. The order number for the Main Power Supply Cable is JZSP-UVAA01-DD-E (standard cable) or JZSP-UVAA21-DD-E (flexible cable). The order number for the Holding Brake Cable is JZSP-CVB9-SMC3-E.

*2. The order number for the Main Power Supply Cable is JZSP-UVAA02-DD-E (standard cable) or JZSP-UVAA22-DD-E (flexible cable). The order number for the Holding Brake Cable is JZSP-CVB9-AMC3-E.

Servo-		Con-		Order N	Number	
motor Model	Name	nector Specifi- cations	Length (L)	Standard Cable	Flexible Cable	Appearance
			3 m	JZSP-UVAB01-03-E	JZSP-UVAB21-03-E	
			5 m	JZSP-UVAB01-05-E	JZSP-UVAB21-05-E	SERVOPACK Motor end
		Straight	10 m	JZSP-UVAB01-10-E	JZSP-UVAB21-10-E	
			15 m	JZSP-UVAB01-15-E	JZSP-UVAB21-15-E	
	For Servomo- tors without		20 m	JZSP-UVAB01-20-E	JZSP-UVAB21-20-E	
	Holding Brakes		3 m	JZSP-UVAB02-03-E	JZSP-UVAB22-03-E	
		D , 1 , 1	5 m	JZSP-UVAB02-05-E	JZSP-UVAB22-05-E	SERVOPACK Motor end
		Right- angle	10 m	JZSP-UVAB02-10-E	JZSP-UVAB22-10-E	
SGM7G-		angle	15 m	JZSP-UVAB02-15-E	JZSP-UVAB22-15-E	
1AA,			20 m	JZSP-UVAB02-20-E	JZSP-UVAB22-20-E	
1EA	F 0		3 m	JZSP-UVAB31-03-E	JZSP-UVAB41-03-E	SERVOPACK Motor end
11 kW	For Servomo- tors with Hold-		5 m	JZSP-UVAB31-05-E	JZSP-UVAB41-05-E	
15 kW	ing Brakes	Straight	10 m	JZSP-UVAB31-10-E	JZSP-UVAB41-10-E	
	Note: Set of two	*1	15 m	JZSP-UVAB31-15-E	JZSP-UVAB41-15-E	SERVOPACK Brake end
	cables (Main		20 m	JZSP-UVAB31-20-E	JZSP-UVAB41-20-E	
	Power Supply Cable and Holding Brake Cable)		3 m	JZSP-UVAB32-03-E	JZSP-UVAB42-03-E	SERVOPACK Motor end
			5 m	JZSP-UVAB32-05-E	JZSP-UVAB42-05-E	
		Right- angle ^{*2}	10 m	JZSP-UVAB32-10-E	JZSP-UVAB42-10-E	
		5.1910	15 m	JZSP-UVAB32-15-E	JZSP-UVAB42-15-E	Brake end Motor end
			20 m	JZSP-UVAB32-20-E	JZSP-UVAB42-20-E	

Note: If you need a Cable with a length of 20 m to 50 m, consider the operating conditions and specify a suitable length.

*1. The order number for the Main Power Supply Cable is JZSP-UVAB01-DD-E (standard cable) or JZSP-UVAB21-DD-E (flexible cable). The order number for the Holding Brake Cable is JZSP-CVB9-SMC3-E.

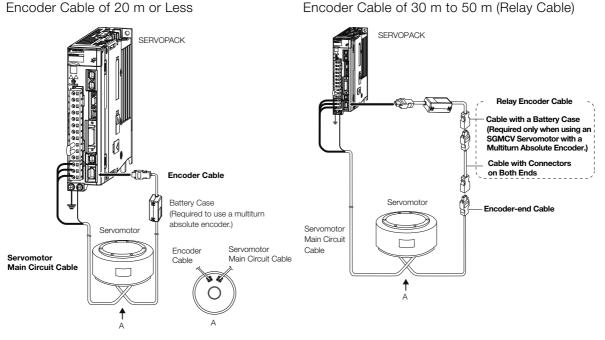
*2. The order number for the Main Power Supply Cable is JZSP-UVAB02-□□-E (standard cable) or JZSP-UVAB22-□□-E (flexible cable). The order number for the Holding Brake Cable is JZSP-CVB9-AMC3-E.

Encoder Cables of 20 m or Less

Servomotor	Name	Length	Order N	Number	A
Model	Model		Standard Cable	Flexible Cable [*]	Appearance
		3 m	JZSP-CVP01-03-E	JZSP-CVP11-03-E	
		5 m	JZSP-CVP01-05-E	JZSP-CVP11-05-E	SERVOPACK Encoder end
	Cables with	10 m	JZSP-CVP01-10-E	JZSP-CVP11-10-E	
	Connec-	15 m	JZSP-CVP01-15-E	JZSP-CVP11-15-E	
	tors on Both Ends	20 m	JZSP-CVP01-20-E	JZSP-CVP11-20-E	
	(for incre-	3 m	JZSP-CVP02-03-E	JZSP-CVP12-03-E	
	mental	5 m	JZSP-CVP02-05-E	JZSP-CVP12-05-E	SERVOPACK Encoder end
	encoder)	10 m	JZSP-CVP02-10-E	JZSP-CVP12-10-E	
		15 m	JZSP-CVP02-15-E	JZSP-CVP12-15-E	
All SGM7G models		20 m	JZSP-CVP02-20-E	JZSP-CVP12-20-E	
All Salvir a models		3 m	JZSP-CVP06-03-E	JZSP-CVP26-03-E	
	Cables with	5 m	JZSP-CVP06-05-E	JZSP-CVP26-05-E	SERVOPACK Encoder end
	Connec-	10 m	JZSP-CVP06-10-E	JZSP-CVP26-10-E	
	tors on	15 m	JZSP-CVP06-15-E	JZSP-CVP26-15-E	Battery Case (battery included)
	Both Ends	20 m	JZSP-CVP06-20-E	JZSP-CVP26-20-E	
	(for abso- lute	3 m	JZSP-CVP07-03-E	JZSP-CVP27-03-E	
	encoder:	5 m	JZSP-CVP07-05-E	JZSP-CVP27-05-E	
	With Bat-	10 m	JZSP-CVP07-10-E	JZSP-CVP27-10-E	
	tery Case)	15 m	JZSP-CVP07-15-E	JZSP-CVP27-15-E	Battery Case (battery included)
		20 m	JZSP-CVP07-20-E	JZSP-CVP27-20-E	

* Use Flexible Cables for moving parts of machines, such as robots.

Relay Encoder Cables of 30 m to 50 m


Servomotor Model	Name	Length (L)	Order Number for Standard Cable	Appearance
All SGM7G models	Encoder-end Cable (for incremental or absolute encoder)	0.3 m	JZSP-CVP01-E	SERVOPACK end Encoder end
			JZSP-CVP02-E	SERVOPACK end Encoder end
	Cables with Connec- tors on Both Ends (for incremental or absolute encoder)	30 m	JZSP-UCMP00-30-E	SERVOPACK Encoder end
		40 m	JZSP-UCMP00-40-E	
		50 m	JZSP-UCMP00-50-E	
	Cable with a Battery Case (Required when an absolute encoder is used.)*	0.3 m	JZSP-CSP12-E	SERVOPACK Encoder end end Battery Case (battery included)

* This Cable is not required if a battery is connected to the host controller.

Cables for Direct Drive Servomotors

System Configurations

The cables shown below are required to connect a Servomotor to a SERVOPACK.

Note: 1. If the cable length exceeds 20 m, be sure to use a Relay Encoder Cable.

- 2. If you use a Servomotor Main Circuit Cable that exceeds 20 m, the intermittent duty zone in the torquemotor speed characteristics will become smaller because the voltage drop increases.
- 3. Refer to the following manual for the following information.
 - Cable dimensional drawings and cable connection specifications
 - Order numbers and specifications of individual connectors for cables
 - Order numbers and specifications for wiring materials
 - Derive Peripheral Device Selection Manual (Manual No.: SIEP S800001 32)

Servomotor Main Circuit Cables

Servomotor Model	Length	Order Number		Annooronoo
Servomotor woder	(L)	Standard Cable	Flexible Cable ^{*1}	Appearance
SGMCV-DDB SGMCV-DDC	3 m	JZSP-CMM60-03-E	JZSP-C7MDN23-03-E	SERVOPACK Motor end
	5 m	JZSP-CMM60-05-E	JZSP-C7MDN23-05-E	
Flange specification ^{*2} : 1 Non-load side installa-	10 m	JZSP-CMM60-10-E	JZSP-C7MDN23-10-E	
	15 m	JZSP-CMM60-15-E	JZSP-C7MDN23-15-E	
tion	20 m	JZSP-CMM60-20-E	JZSP-C7MDN23-20-E	
SGMCV-DDB	3 m	JZSP-CMM00-03-E	JZSP-C7MDS23-03-E	
SGMCV-DDC	5 m	JZSP-CMM00-05-E	JZSP-C7MDS23-05-E	SERVOPACK Motor end
Flange specification ^{*2} : 4	10 m	JZSP-CMM00-10-E	JZSP-C7MDS23-10-E	
Non-load side installa-	15 m	JZSP-CMM00-15-E	JZSP-C7MDS23-15-E	
tion (with cable on side)	20 m	JZSP-CMM00-20-E	JZSP-C7MDS23-20-E	1

*1. Use Flexible Cables for moving parts of machines, such as robots.

*2. Refer to the following section for the flange specifications.

Flange Specifications (page 299)

Note: Direct Drive Servomotors are not available with holding brakes.

Cables for Direct Drive Servomotors

♦ SGMCS-□□

	Length	Order N		
Servomotor Model	(L)	Standard Cable	Flexible Cable ^{*1}	Appearance
SGMCS-DDB	3 m	JZSP-CMM60-03-E	JZSP-CSM60-03-E	
SGMCS-□□C SGMCS-□□D	5 m	JZSP-CMM60-05-E	JZSP-CSM60-05-E	SERVOPACK Motor end
SGMCS-DDE	10 m	JZSP-CMM60-10-E	JZSP-CSM60-10-E	
Flange specification ^{*2} : 1	15 m	JZSP-CMM60-15-E	JZSP-CSM60-15-E	
Non-load side installation	20 m	JZSP-CMM60-20-E	JZSP-CSM60-20-E	
SGMCS-□□B SGMCS-□□C	3 m	JZSP-CMM00-03-E	JZSP-CMM01-03-E	
	5 m	JZSP-CMM00-05-E	JZSP-CMM01-05-E	SERVOPACK Motor end
	10 m	JZSP-CMM00-10-E	JZSP-CMM01-10-E	
Flange specification ^{*2} : 4 Non-load side	15 m	JZSP-CMM00-15-E	JZSP-CMM01-15-E	
installation (with cable on side)	20 m	JZSP-CMM00-20-E	JZSP-CMM01-20-E	
	3 m	JZSP-USA101-03-E	JZSP-USA121-03-E	
	5 m	JZSP-USA101-05-E	JZSP-USA121-05-E	SERVOPACK Motor end
	10 m	JZSP-USA101-10-E	JZSP-USA121-10-E	
SGMCS-DDM	15 m	JZSP-USA101-15-E	JZSP-USA121-15-E	
SGMCS-□□N	20 m	JZSP-USA101-20-E	JZSP-USA121-20-E	
□□: 45	3 m	JZSP-USA102-03-E	JZSP-USA122-03-E	
□□: 80	5 m	JZSP-USA102-05-E	JZSP-USA122-05-E	SERVOPACK Motor end
	10 m	JZSP-USA102-10-E	JZSP-USA122-10-E	
	15 m	JZSP-USA102-15-E	JZSP-USA122-15-E	
	20 m	JZSP-USA102-20-E	JZSP-USA122-20-E	
	3 m	JZSP-USA301-03-E	JZSP-USA321-03-E	
	5 m	JZSP-USA301-05-E	JZSP-USA321-05-E	SERVOPACK Motor end
	10 m	JZSP-USA301-10-E	JZSP-USA321-10-E	
SGMCS-DDM	15 m	JZSP-USA301-15-E	JZSP-USA321-15-E	
	20 m	JZSP-USA301-20-E	JZSP-USA321-20-E	
	3 m	JZSP-USA302-03-E	JZSP-USA322-03-E	
□□: 1A	5 m	JZSP-USA302-05-E	JZSP-USA322-05-E	SERVOPACK Motor end
	10 m	JZSP-USA302-10-E	JZSP-USA322-10-E	
	15 m	JZSP-USA302-15-E	JZSP-USA322-15-E	
	20 m	JZSP-USA302-20-E	JZSP-USA322-20-E	
	3 m	JZSP-USA501-03-E	JZSP-USA521-03-E	
	5 m	JZSP-USA501-05-E	JZSP-USA521-05-E	SERVOPACK Motor end
	10 m	JZSP-USA501-10-E	JZSP-USA521-10-E	
SGMCS-□□M	15 m	JZSP-USA501-15-E	JZSP-USA521-15-E	
SGMCS-□□N	20 m	JZSP-USA501-20-E	JZSP-USA521-20-E	
DD : 1E	3 m	JZSP-USA502-03-E	JZSP-USA522-03-E	
	5 m	JZSP-USA502-05-E	JZSP-USA522-05-E	SERVOPACK Motor end
	10 m	JZSP-USA502-10-E	JZSP-USA522-10-E	
	15 m	JZSP-USA502-15-E	JZSP-USA522-15-E	
	20 m	JZSP-USA502-20-E	JZSP-USA522-20-E	
	1			l

*1. Use Flexible Cables for moving parts of machines, such as robots.

*2. Refer to the following section for the flange specifications.

🗊 Flange Specifications (page 299)

Note: Direct Drive Servomotors are not available with holding brakes.

Encoder Cables of 20 m or Less

♦ SGMCV-□□

Comversator Madal	Neme	Length	Order I	Number	A
Servomotor Model	Name	(L)	Standard Cable	Flexible Cable ^{*1}	Appearance
SGMCV-DDBE		3 m	JZSP-CMP60-03-E	JZSP-CSP60-03-E	
SGMCV-DDCE		5 m	JZSP-CMP60-05-E	JZSP-CSP60-05-E	SERVOPACK Encoder end
	For single-	10 m	JZSP-CMP60-10-E	JZSP-CSP60-10-E	
Flange specifica-	turn abso-	15 m	JZSP-CMP60-15-E	JZSP-CSP60-15-E	
tion ^{*2} : 1	lute encoder	20 m	JZSP-CMP60-20-E	JZSP-CSP60-20-E	
SGMCV-DDBE	(without	3 m	JZSP-CMP00-03-E	JZSP-CMP10-03-E	
SGMCV-DDCE	Battery	5 m	JZSP-CMP00-05-E	JZSP-CMP10-05-E	SERVOPACK Encoder end
	Case)	10 m	JZSP-CMP00-10-E	JZSP-CMP10-10-E	
Flange specifica-		15 m	JZSP-CMP00-15-E	JZSP-CMP10-15-E	
tion ^{*2} : 4		20 m	JZSP-CMP00-20-E	JZSP-CMP10-20-E	
	For multi-	3 m	JZSP-C7PI00-03-E	JZSP-C7PI20-03-E	
	turn abso- lute encoder (without Battery	5 m	JZSP-C7PI00-05-E	JZSP-C7PI20-05-E	SERVOPACK Encoder end
		10 m	JZSP-C7PI00-10-E	JZSP-C7PI20-10-E	
SGMCV-□□BI SGMCV-□□CI		15 m	JZSP-C7PI00-15-E	JZSP-C7PI20-15-E	
	Case ^{*3})	20 m	JZSP-C7PI00-20-E	JZSP-C7PI20-20-E	
Flange specifica-	For multi-	3 m	JZSP-C7PA00-03-E	JZSP-C7PA20-03-E	SERVOPACK Encoder end
tion*2: 1	turn abso-	5 m	JZSP-C7PA00-05-E	JZSP-C7PA20-05-E	
	lute encoder	10 m	JZSP-C7PA00-10-E	JZSP-C7PA20-10-E	
	(with Bat-	15 m	JZSP-C7PA00-15-E	JZSP-C7PA20-15-E	Battery Case
	tery Case)	20 m	JZSP-C7PA00-20-E	JZSP-C7PA20-20-E	(battery included)
	For multi-	3 m	JZSP-CMP00-03-E	JZSP-CMP10-03-E	
	turn abso- lute	5 m	JZSP-CMP00-05-E	JZSP-CMP10-05-E	SERVOPACK Encoder end
	encoder	10 m	JZSP-CMP00-10-E	JZSP-CMP10-10-E	
SGMCV-□□BI SGMCV-□□CI	(without Battery	15 m	JZSP-CMP00-15-E	JZSP-CMP10-15-E	
	Case ^{*3})	20 m	JZSP-CMP00-20-E	JZSP-CMP10-20-E	
Flange specifica-	For multi-	3 m	JZSP-CSP19-03-E	JZSP-CSP29-03-E	SERVOPACK Encoder end
tion ^{*2} : 4	turn abso-	5 m	JZSP-CSP19-05-E	JZSP-CSP29-05-E	end L
	lute encoder	10 m	JZSP-CSP19-10-E	JZSP-CSP29-10-E	
	(with Bat-	15 m	JZSP-CSP19-15-E	JZSP-CSP29-15-E	Battery Case
	tery Case)	20 m	JZSP-CSP19-20-E	JZSP-CSP29-20-E	(battery included)

*1. Use Flexible Cables for moving parts of machines, such as robots.

*2. Refer to the following section for the flange specifications.

Flange Specifications (page 299)

*3. Use one of these Cables if a battery is connected to the host controller.

Cables for Direct Drive Servomotors

♦ SGMCS-□□

Servomotor Model	Name	Length	Order N	Number	Appeorance
Servornotor woder	Name	(L)	Standard Cable	Flexible Cable*1	Appearance
		3 m	JZSP-CMP60-03-E	JZSP-CSP60-03-E	
SGMCS-□□		5 m	JZSP-CMP60-05-E	JZSP-CSP60-05-E	SERVOPACK Encoder end
Flange specifica-		10 m	JZSP-CMP60-10-E	JZSP-CSP60-10-E	
tion ^{*2} : 1 or 3	For incre- mental/	15 m	JZSP-CMP60-15-E	JZSP-CSP60-15-E	
		20 m	JZSP-CMP60-20-E	JZSP-CSP60-20-E	
	absolute	3 m	JZSP-CMP00-03-E	JZSP-CMP10-03-E	
SGMCS-□□	encoder	5 m	JZSP-CMP00-05-E	JZSP-CMP10-05-E	SERVOPACK Encoder end
Flange Specifica- tion ^{*2} : 4		10 m	JZSP-CMP00-10-E	JZSP-CMP10-10-E	
		15 m	JZSP-CMP00-15-E	JZSP-CMP10-15-E	
		20 m	JZSP-CMP00-20-E	JZSP-CMP10-20-E	

*1. Use Flexible Cables for moving parts of machines, such as robots.

*2. Refer to the following section for the flange specifications.

Flange Specifications (page 299)

Relay Encoder Cables of 30 m to 50 m

♦ SGMCV-□□

Servomotor Model	Name	Length (L)	Order Number ^{*1}	Appearance
SGMCV-□□BE SGMCV-□□BI SGMCV-□□CE SGMCV-□□CI	Encoder-end Cable (for single-turn/multi- turn absolute encoder)	0.3 m	JZSP-C7PRC0-E	SERVOPACK Encoder end end
Flange specifica- tion ^{*2} : 1	,			
	Cables with Connec-	30 m	JZSP-UCMP00-30-E	
SGMCV-□□CE SGMCV-□□CI	tors on Both Ends (for single-turn/multi-	40 m	JZSP-UCMP00-40-E	
Flange specifica- tion ^{*2} : 1 or 4	turn absolute encoder)	50 m	JZSP-UCMP00-50-E	
SGMCV-□□BI SGMCV-□□CI	Cable with a Battery Case	0.3 m	JZSP-CSP12-E	SERVOPACK Encoder end
Flange specifica- tion ^{*2} : 1 or 4	(for multiturn absolute encoder) ^{*3}	0.3 m	JZOF-UOF 12-E	Battery Case (battery included)

*1. Flexible cables are not available.

*2. Refer to the following section for the flange specifications.

*3. Use one of these Cables if a battery is connected to the host controller.

♦ SGMCS-□□

Servomotor Model	Name	Length (L)	Order Number ^{*1}	Appearance
SGMCS-	Encoder-end Cable	0.3 m	JZSP-CSP15-E	SERVOPACK Encoder end
Flange specifica- tion ^{*2} : 1 or 3	(for incremental or absolute encoder)	0.3 m	Ј25Р-05РТ5-Е	
SGMCS-DD	Cables with Connec-	30 m	JZSP-UCMP00-30-E	SERVOPACK Encoder end
Flange specifica-	tors on Both Ends (for incremental or abso-	40 m	JZSP-UCMP00-40-E	
tion ^{*2} : 1, 3, or 4	lute encoder)	50 m	JZSP-UCMP00-50-E	

*1. Flexible cables are not available.

*2. Refer to the following section for the flange specifications.

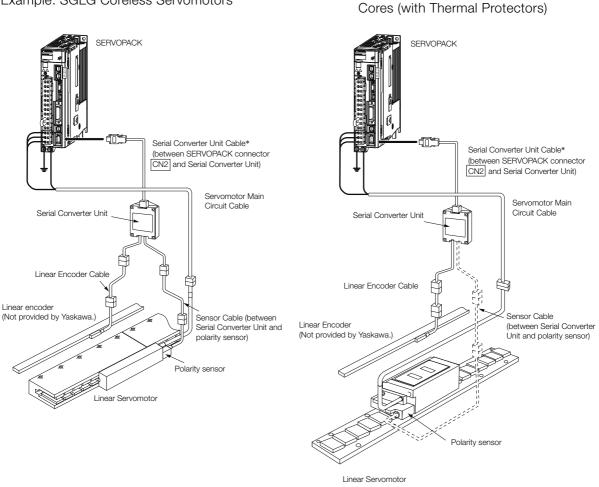
Flange Specifications (page 299)

Flange Specifications

♦ SGMCV-□□

Flange Specification Code	Flange Location	Servomotor Outer Diameter Code (3rd Digit)		
(6th Digit)	Trange Location	В	С	
1	Non-load side	\checkmark	\checkmark	
4	Non-load side (with cable on side)	✓	✓	

\checkmark : Applicable models


♦ SGMCS-□□

Flange Specification			Servomotor Outer Diameter Code (3rd Digit)						
Code (6th Digit)		В	С	D	E	М	N		
1	Non-load side	~	~	~	~	-	-		
	Load-side	-	-	-	-	~	✓		
3	Non-load side	-	-	-	-	~	✓		
4	Non-load side (with cable on side)	~	~	~	~	_	_		

✓: Applicable models

Cables for Linear Servomotors

System Configurations

Example: SGLFW2 Servomotors with F-type Iron

Example: SGLG Coreless Servomotors

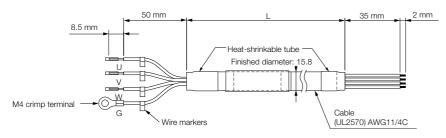
* You can connect directly to an absolute linear encoder.

- Note: 1. The above system configurations are for SGLG Coreless Servomotors or SGLFW2 Servomotors with Ftype Iron Cores (with thermal protectors). Refer to the manual for the Linear Servomotor for configurations with other models.
 - 2. Refer to the following manual for the following information.
 - Cable dimensional drawings and cable connection specifications
 - Order numbers and specifications of individual connectors for cables
 - Order numbers and specifications for wiring materials
 - L Σ-7-Series AC Servo Drive Peripheral Device Selection Manual (Manual No.: SIEP S800001 32)

Servomotor Main Circuit Cables

Servomotor Model	Length (L)	Order Number	Appearance
	1 m	JZSP-CLN11-01-E	
SGLGW-30A, -40A, -60A SGLFW-20A, -35A All SGLC models	3 m	JZSP-CLN11-03-E	SERVOPACK end Motor end
	5 m	JZSP-CLN11-05-E	<u> </u>
	10 m	JZSP-CLN11-10-E	
	15 m	JZSP-CLN11-15-E	
	20 m	JZSP-CLN11-20-E	

Servomotor Model	Length (L)	Order Number	Appearance
	1 m	JZSP-CLN21-01-E	
	3 m	JZSP-CLN21-03-E	SERVOPACK end Motor end
SGLGW-90A SGLFW-50A, -1ZA	5 m	JZSP-CLN21-05-E	
SGLTW-20A, -12A SGLTW-20A, -35A	10 m	JZSP-CLN21-10-E	
	15 m	JZSP-CLN21-15-E	
	20 m	JZSP-CLN21-20-E	
	1 m	JZSP-CLN14-01-E	
SGLGW-30ADDDDDD	3 m	JZSP-CLN14-03-E	SERVOPACK end Motor end
	5 m	JZSP-CLN14-05-E	
-60A□□□□□D SGLFW-□□A□□□□□D	10 m	JZSP-CLN14-10-E	
SGLTW-DDADDDDD	15 m	JZSP-CLN14-15-E	
	20 m	JZSP-CLN14-20-E	-
	1 m	JZSP-CLN39-01-E	
	3 m	JZSP-CLN39-03-E	SERVOPACK end Motor end
SGLTW-4000080	5 m	JZSP-CLN39-05-E	
-80000B0	10 m	JZSP-CLN39-10-E	
	15 m	JZSP-CLN39-15-E	
	20 m	JZSP-CLN39-20-E	-
	1 m	JZSP-CL2N703-01-E	
SGLFW2-30A070A□ SGLFW2-30A070A□L	3 m	JZSP-CL2N703-03-E	SERVOPACK end Motor end
SGLFW2-30A120A	5 m	JZSP-CL2N703-05-E	<u> </u>
SGLFW2-30A120A□L	10 m	JZSP-CL2N703-10-E	
SGLFW2-30A230A□ SGLFW2-30A230A□L	15 m	JZSP-CL2N703-15-E	
SGLFWZ-30AZ30AUL	20 m	JZSP-CL2N703-20-E	*
	1 m	JZSP-CL2N603-01-E	
SGLFW2-45A200A	3 m	JZSP-CL2N603-03-E	SERVOPACK end Motor end
SGLFW2-45A200A□L	5 m	JZSP-CL2N603-05-E	
SGLFW2-45A380A	10 m	JZSP-CL2N603-10-E	
SGLFW2-45A380A□L	15 m	JZSP-CL2N603-15-E	
	20 m	JZSP-CL2N603-20-E	
	1 m	JZSP-CL2N503-01-E	-
SGLFW2-90A200A□ SGLFW2-90A380A□	3 m	JZSP-CL2N503-03-E	SERVOPACK end Motor end
SGLFW2-90A560A	5 m	JZSP-CL2N503-05-E	
SGLFW2-1DA380A□	10 m	JZSP-CL2N503-10-E	
SGLFW2-1DA560A□	15 m	JZSP-CL2N503-15-E	-
	20 m	JZSP-CL2N503-20-E	


Note: Estimates are available for models other than those listed above (SGLFW2-90ADDDADL and SGLFW2-1DDDDADL).

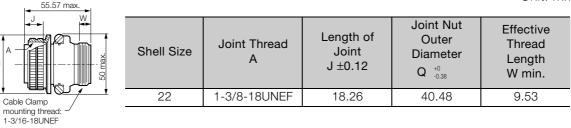
*1. Connector from Tyco Electronics Japan G.K.

*2. Connector from Interconnectron GmbH

*3. A connector is not provided on the Linear Servomotor end. Obtain a connector according to your specifications. Refer to the next page for information on connectors. Cables for Linear Servomotors

JZSP-CLN39-DD-E Cables

Wiring Specifications


SERVOPACK Leads			Servomotor Connector		
Wire Color	Signal		Signal	Pin	
Red	Phase U		Phase U	А	
White	Phase V		Phase V	В	
Blue	Phase W		Phase W	С	
Green/yellow	FG		FG	D	

♦ JZSP-CLN39 Cable Connectors

Applicable	Connector	PI		
Servomotor	Provided with Servomotor	Straight	Right-angle	Cable Clamp
SGLTW-40 and -80	MS3102A22-22P	MS3106B22-22S or MS3106A22-22S	MS3108B22-22S	MS3057-12A

◆ MS3106B22-2S: Straight Plug with Two-piece Shell

Unit: mm

MS3106A22-2S: Straight Plug with Solid Shell

Unit: mm

34.99 ±0.5 dia.	Shell Size	Joint Thread A	Length of Joint J ±0.12	Joint Nut Outer Diameter Q ⁺⁰ _{-0.38}	Effective Thread Length W min.
1	22	1-3/8-18UNEF	18.26	40.48	9.53

Cable Clamp mounting thread: 1-3/16-18UNEF

J

54±0.5

-

Ø

◆ MS3108B22-2S: Right-angle Plug with Two-piece Shell

76.98 max.					Unit: mm
	Shell Size	Joint Thread A	Length of Joint J ± 0.12	Joint Nut Outer Diameter Q ⁺⁰ _{-0.38}	Effective Thread Length W min.
Cable Clamp	22	1-3/8-18UNEF	18.26	40.48	9.53
mounting thread:/ 1-3/16-18UNEF					

• Dimensional Drawings: MS3057-12A Cable Clamp with Rubber Bushing

Unit: mm

23.8±0.7 1.6 tushing inner diameter) 19.0 dia. (Cable Clamp inner diameter)	Applicable Connector Shell Size	Effective Thread Length C	Mounting Thread V	Attached Bushing
4.0 (slide range)	20.22	10.3	1-3/16- 18UNEF	AN3420-12

Linear Encoder Cables

Name	Servomotor Model	Length [*] (L)	Order Number	Appearance		
		1 m	JZSP-CLL00-01-E			
For linear		3 m	JZSP-CLL00-03-E			
encoder from	All Models	5 m	JZSP-CLL00-05-E			
Renishaw PLC		10 m	JZSP-CLL00-10-E	Serial Converter Linear encoder		
		15 m	JZSP-CLL00-15-E	Unit end L end		
	All MOUEIS	1 m	JZSP-CLL30-01-E			
For linear encoder from Heidenhain Corporation		3 m	JZSP-CLL30-03-E			
		5 m	JZSP-CLL30-05-E			
		10 m	JZSP-CLL30-10-E			
,		15 m	JZSP-CLL30-15-E			

* When using a JZDP-J00D-DDD-E Serial Converter Unit, do not exceed a cable length of 3 m.

Serial Converter Unit Cables

Servomotor Model	Length (L)	Order Number	Appearance
	1 m	JZSP-CLP70-01-E	
	3 m	JZSP-CLP70-03-E	SERVOPACK Serial Converter
All Models	5 m	JZSP-CLP70-05-E	end L Unit end
All Models	10 m	JZSP-CLP70-10-E	
	15 m	JZSP-CLP70-15-E	
	20 m	JZSP-CLP70-20-E	

Sensor Cables

Servomotor Model	Length (L)	Order Number	Appearance
	1 m	JZSP-CLL10-01-E	
SGLGW-DDA	3 m	JZSP-CLL10-03-E	
SGLFW-□□A SGLTW-□□A	5 m	JZSP-CLL10-05-E	
	10 m	JZSP-CLL10-10-E	Serial Converter Polarity sensor
	15 m	JZSP-CLL10-15-E	Unit end
	1 m	JZSP-CL2L100-01-E	
	3 m	JZSP-CL2L100-03-E	
SGLFW2-DDADDDASD (With Polarity Sensor)	5 m	JZSP-CL2L100-05-E	
(with rolancy Sensor)	10 m	JZSP-CL2L100-10-E	
	15 m	JZSP-CL2L100-15-E	
	1 m	JZSP-CL2TH00-01-E	
SGLFW2-DDADDDATD (Without Polarity Sensor)	3 m	JZSP-CL2TH00-03-E	Serial Converter Thermal Protector Unit end L end
	5 m	JZSP-CL2TH00-05-E	
	10 m	JZSP-CL2TH00-10-E	
	15 m	JZSP-CL2TH00-15-E	· · · · · · · · · · · · · · · · · · ·

Serial Converter Units

Selection Table (Model Designations)

Use the following tables to select the Serial Converter Unit.

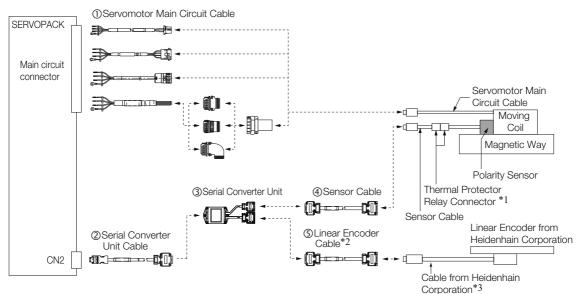
		JZDP	-							
	Serial Conver	ter Unit Model				Applic	able Lir	near Servom	otor	
				Ð	Servomot		Code		tor Model	Code
		Applicable	ity	Temperature Sensor		30A050C	250		20A170A	011
Code	Appearance	Linear Encoder	Polarity Sensor	mperatu Sensor		30A080C	251		20A320A	012
		Encoder	Ш ()	Ter		40A140C	252		20A460A	013
	/el let				SGLGW - (coreless	40A253C	253		35A170A	014
H003 J003		From Heid- enhain Corp.	None	None	models)	40A365C	254		35A320A	015
0000					For Stan-	60A140C	258	SGLTW-	35A460A	016
H005		From	Nama	Nama	dard-force Magnetic	60A253C	259	(models	35A170H	105
J005		Renishaw PLC	None	None	Way	60A365C	260	with T- type iron	35A320H	106
		1 20			,	90A200C	264	cores)	50A170H	108
H006		From Heid-	Yes	Yes		90A370C	265	/	50A320H	109
J006		enhain Corp.	100	100		90A535C	266		40A400B	185
		From			SGLGW -	40A140C	255		40A600B	186
H008 J008		Renishaw	Yes	Yes	+ SGLGM -	40A253C	256		80A400B	187
0000		PLC			-M	40A365C	257		80A600B	188
					(coreless models)	60A140C	261		D16A085AP	354
					For High- force Mag-	60A253C	262		D16A115AP	373
					netic Way	60A365C	263		D16A145AP	356
						20A090A	017		D20A100AP	357
						20A120A	018	SGLC-	D20A135AP	358
					SGLFW-	35A120A	019	(cylinder	D20A170AP	359
					(models	35A230A	020	models)	D25A125AP	360
					with F-type	50A200B	181		D25A170AP	374
					iron cores)	50A380B	182		D25A215AP	362
						1ZA200B	183		D32A165AP	363
						1ZA380B	184		D32A225AP	364
						30A070A	628		D32A285AP	365
						30A120A	629			
						30A230A	630			
					SGLFW2-	45A200A	631			
					(models	45A380A	632			
					with F-type iron cores)	90A200A	633			
					1011 00163)	90A380A	634			
						90A560A	648			
						1DA380A	649			
						1DA560A	650			
Note: 1. I	Refer to the following s	ection for deta	iled spe	cificatior	ns of the Seri	al Converte	er Units			

Note: 1. Refer to the following section for detailed specifications of the Serial Converter Units.

Ω Σ-7-Series AC Servo Drive Peripheral Device Selection Manual (Manual No.: SIEP S800001 32)

2. Contact your Yaskawa representative for information on the water cooling specifications of the SGLFW2.

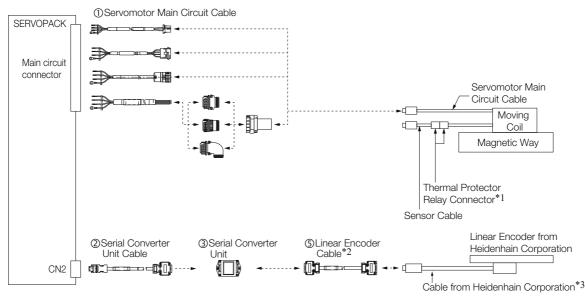
Recommended Linear Encoders


Cable Configurations

The peripheral devices to obtain depend on whether the Linear Servomotor has a polarity sensor, the manufacturer of the Linear Encoder, and the type of encoder. Refer to *Recommended Linear Encoders* (page M-20) for information on Linear Encoders that you can use with Σ -7-Series SERVO-PACKs.

Connections to Linear Encoder from Heidenhain Corporation

Connections for a 1 Vp-p Analog Voltage Output Signal


You must make the connections through a Yaskawa Serial Converter Unit. The output signal will be multiplied by 8 bits (256 divisions) or 12 bits (4,096 divisions) in the Serial Converter Unit.

Connecting to a Linear Servomotor with a Polarity Sensor

*1. Only SGLFW2 Servomotors come equipped with Thermal Protector Relay Connectors.

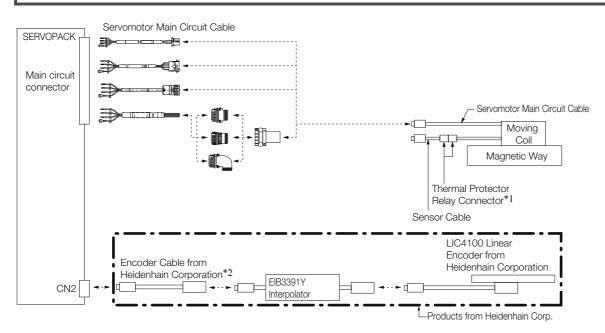
*3. Contact Heidenhain Corporation for details on cables (analog 1 Vp-p output, D-sub 15-pin, male) from Heidenhain Corporation.

Connecting to a Linear Servomotor without a Polarity Sensor

*1. Only SGLFW2 Servomotors come equipped with Thermal Protector Relay Connectors.

*2. When using a JZDP-J00 --- Serial Converter Unit, do not use a Yaskawa Linear Encoder Cable that is longer than 3 m.

*3. Contact Heidenhain Corporation for details on cables (analog 1 Vp-p output, D-sub 15-pin, male) from Heidenhain Corporation.


No.	Cable Type	Reference
0	Servomotor Main Circuit Cable	page 300
2	Serial Converter Unit Cable	page 303
3	Serial Converter Unit	page 305
4	Sensor Cable	page 304
\$	Linear Encoder Cable	page 303

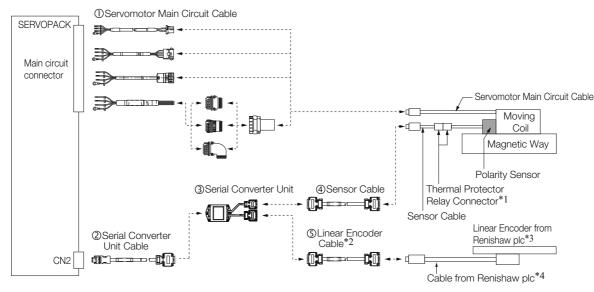
Recommended Linear Encoders

◆ LIC4100 Linear Encoder with EIB3391Y Interpolator

1. You cannot use an LIC4100 Linear Encoder together with a Linear Servomotor with a Polarity Sensor.

2. If you use an SGLFW2 Servomotor, input the thermal protector signal from the Linear Servomotor to the host controller. The thermal protector signal is closed when the temperature is normal and open when the thermal protector is activated. Do not exceed 5 A or 250 V.

*1. Only SGLFW2 Servomotors come equipped with Thermal Protector Relay Connectors.

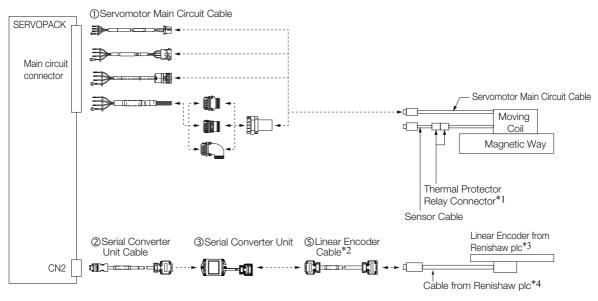

*2. Use an Encoder Cable from Heidenhain Corporation. Contact Heidenhain Corporation for detailed Encoder Cable specifications.

Connections to Linear Encoder from Renishaw plc

• Connections for a 1 Vp-p Analog Voltage Output Signal

You must make the connections through a Yaskawa Serial Converter Unit. The output signal will be multiplied by 8 bits (256 divisions) or 12 bits (4,096 divisions) in the Serial Converter Unit.

Connecting to a Linear Servomotor with a Polarity Sensor



- *1. Only SGLFW2 Servomotors come equipped with Thermal Protector Relay Connectors.
- *2. When using a JZDP-J00--DD Serial Converter Unit, do not use a Yaskawa Linear Encoder Cable that is longer than 3 m.
- *3. If you use the origin signals with a Linear Encoder from Renishaw plc, the origin may sometimes be falsely detected.
- If that occurs, use the BID/DIR signal to output the origin signal only in one direction. *4. Contact Renishaw plc for details on cables (analog 1 Vp-p output, D-sub 15-pin, male) from Renishaw plc. However, the BID and DIR signals are not connected.

Cables and Peripheral Devices

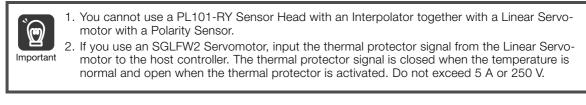
Recommended Linear Encoders

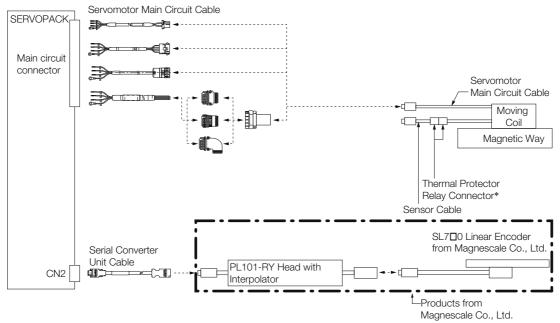
Connecting to a Linear Servomotor without a Polarity Sensor

*1. Only SGLFW2 Servomotors come equipped with Thermal Protector Relay Connectors.

*2. When using a JZDP-J00D-DDD Serial Converter Unit, do not use a Yaskawa Linear Encoder Cable that is longer than 3 m.

*3. If you use the origin signals with a Linear Encoder from Renishaw plc, the origin may sometimes be falsely detected.

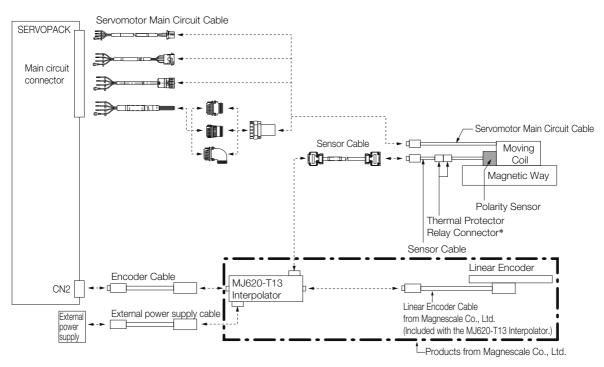

If that occurs, use the BID/DIR signal to output the origin signal only in one direction.


*4. Contact Renishaw plc for details on cables (analog 1 Vp-p output, D-sub 15-pin, male) from Renishaw plc. However, the BID and DIR signals are not connected.

No.	Cable Type	Reference
0	Servomotor Main Circuit Cable	page 300
2	Serial Converter Unit Cable	page 303
3	Serial Converter Unit	page 305
4	Sensor Cable	page 304
(5)	Linear Encoder Cable	page 303

Connections to Linear Encoder from Magnescale Co., Ltd.

◆ SL7□0 Linear Encoder and PL101-RY Sensor Head with Interpolator


* Only SGLFW2 Servomotors come equipped with Thermal Protector Relay Connectors.

Recommended Linear Encoders

2

SL7D0 Linear Encoder, PL101 Sensor Head, and MJ620-T13 Interpolator

A 5-VDC power supply is required for the MJ620-T13. (The 5-VDC power supply is not provided by Yaskawa.) Refer to the MJ620-T13 specifications from Magnescale Co., Ltd. for the current consumption of Important the MJ620-T13.

* Only SGLFW2 Servomotors come equipped with Thermal Protector Relay Connectors.

No.		Reference	
1	Servomotor Main Circuit Ca	page 300	
2	Encoder Cable		page 313
3	External power supply cable	These cables are not provided by Yaskawa.	page 313
4	Sensor Cable		page 304
\$	Linear Encoder Cable	Use the cables that come with the MJ620- T13 Interpolator. For details, refer to the specifications for the MJ620-T13 Interpolator.	_

Encoder Cables

These cables are not provided by Yaskawa. Use a shielded cable. Refer to the following tables for the pin layouts.

SERVOPACK End of Cable (CN2)

- Plug Connector: 55100-0670 (Molex Japan Co., Ltd)
- Connector order number: JZSP-CMP9-1-E (SERVOPACK Connector Kit)

Pin	Signal	Function
1	-	-
2	PG0 V	Encoder power supply 0 V
3	-	-
4	-	-
5	PS	Serial data
6	/PS	Senardata
Shell	Shield	_

MJ620-T13 End of Cable

For details, refer to the specifications for the MJ620-T13 from Magnescale Co., Ltd..

- Receptacle: PCR-E20LMD+ (Honda Tsushin Kogyo Co., Ltd.)
- Plug: PCR-E20FS+ (Honda Tsushin Kogyo Co., Ltd.)
- Shell: PCS-E20LD (Honda Tsushin Kogyo Co., Ltd.)

Pin	Signal	Function	Pin	Signal	Function
1	Do not connect.	-	12	0 V	0 V
2	Do not connect.	_	13	Do not connect.	-
3	Do not connect.	_	14	0 V	0 V
4	Do not connect.	_	15	Do not connect.	-
5	SD	Serial data	16	0 V	0 V
6	/SD	Senaruata	17	Do not connect.	-
7	Do not connect.	_	18	Do not connect.	-
8	Do not connect.	_	19	Do not connect.	-
9	Do not connect.	_	20	Do not connect.	-
10	Do not connect.	-	Shell	Shield	-
11	Do not connect.	_		·	<u>.</u>

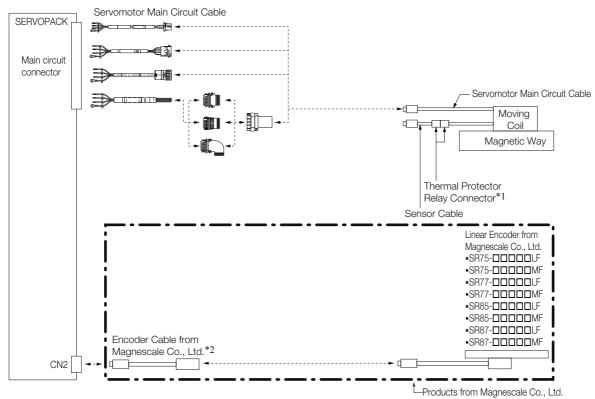
Cables without Connectors

Name	Length (L)	Order N	lumber
Name	Length (L)	Standard Cable	Flexible Cable
	5 m	JZSP-CMP09-05-E	JZSP-CSP39-05-E
Cables without	10 m	JZSP-CMP09-10-E	JZSP-CSP39-10-E
Connectors	15 m	JZSP-CMP09-15-E	JZSP-CSP39-15-E
	20 m	JZSP-CMP09-20-E	JZSP-CSP39-20-E

Note: We recommend that you use Flexible Cables.

External Power Supply Cables

This cable is not provided by Yaskawa. Refer to the table on the right for the pin layout.

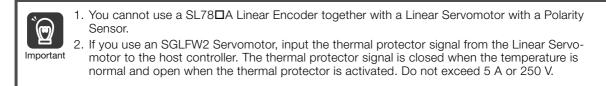

For details, refer to the specifications for the MJ620-T13 from Magnescale Co., Ltd..

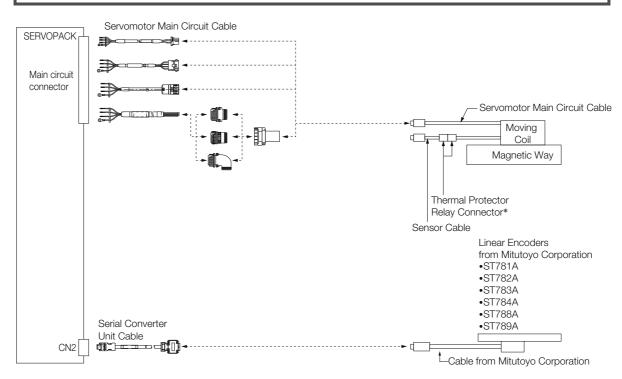
- Connector Header: MC1.5/2-GF-3.81 (Phoenix Contact)
- Connector Plug: MC1.5/2-STF-3.81 (Phoenix Contact)

Pin	Signal	Function
1	+5 V	+5 V
2	0 V	0 V

Recommended Linear Encoders

SR-75, SR-77, SR-85, and SR-87 Linear Encoders

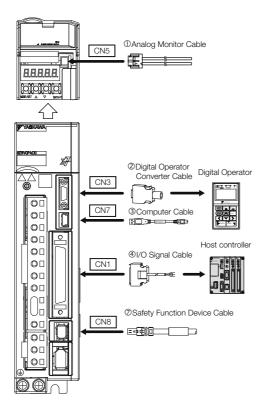



*1. Only SGLFW2 Servomotors come equipped with Thermal Protector Relay Connectors.

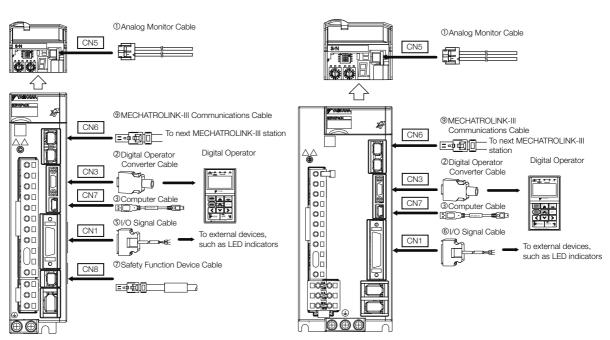
*2. To connect the SERVOPACK and Linear Encoder, use a CH33-xx□□G Cable from Magnescale Co., Ltd. (This cable has connectors designed for use with Yaskawa products.)

Connections to Linear Encoders from Mitutoyo Corporation

◆ SL78□A Linear Encoders



* Only SGLFW2 Servomotors come equipped with Thermal Protector Relay Connectors.


Cables for SERVOPACKs

System Configurations

- Σ-7S Single-axis Analog Voltage/Pulse Train Reference SERVOPACKs
- Σ-7S Single-axis MECHATROLINK-II Communications Reference SERVOPACKs

- ①Analog Monitor Cable CN5 ▓ੱੱ````````` $\{ \}$ **K**OAN Ľ ®MECHATROLINK-II Communications Cable To next MECHATROLINK-II station CN6 __ © Digital Operator ②Digital Operator 0D Converter Cable CN3 OO Ъ OO ΟD CN7 ③Computer Cable Ő OD OD 0 SI/O Signal Cable $\bigcirc \square$ CN1 ➡ To external devices, such as LED indicators OO ġ. -----€ =)0 Uo 6 Safety Function Device Cable CN8 OD 00 OD OD $\Theta \Theta$
- Σ-7S Single-axis MECHATROLINK-III Communications Reference SERVOPACKs
- Σ-7W Two-axis MECHATROLINK-III Communications Reference SERVOPACKs

Selection Table

Important

1. Use the cable specified by Yaskawa for the Computer Cable. Operation may not be dependable with any other cable.

2. Use the cable specified by Yaskawa for the MECHATROLINK Communications Cables. Operation may not be dependable due to low noise resistance with any other cable.

Note: Refer to the following manual for the following information.

- Cable dimensional drawings and cable connection specifications
- Order numbers and specifications of individual connectors for cables

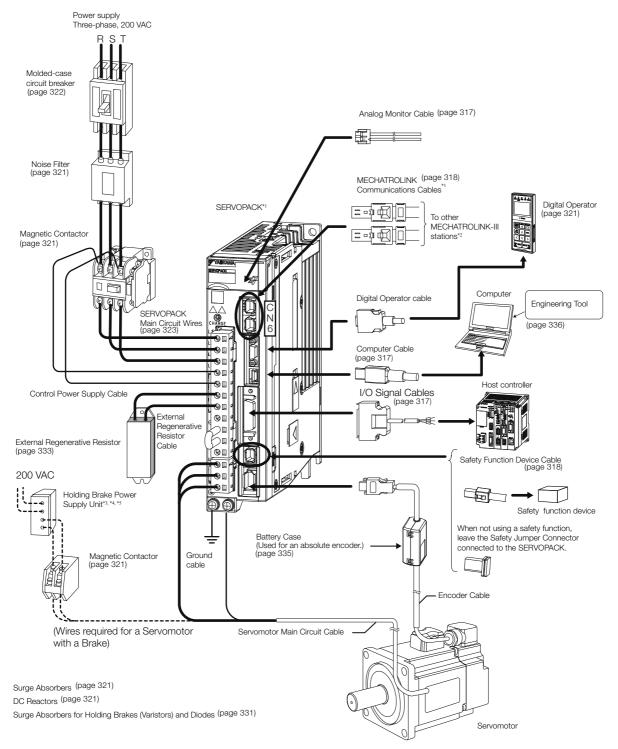
Ω Σ-7-Series AC Servo Drive Peripheral Device Selection Manual (Manual No.: SIEP S800001 32)

Code	Ν	lame	Length (L)	Order Number	Appearance							
0	Analog Moni	tor Cable	1 m	JZSP-CA01-E								
2	Digital Operator Converter		0.3 m	JZSP-CVS05-A3-E*1								
	Cable		0.0 11	JZSP-CVS07-A3-E*2								
3	Computer C	able	2.5 m	JZSP-CVS06-02-E								
		Soldered Conn	ector Kit	JZSP-CSI9-1-E								
		Connector-	0.5 m	JUSP-TA50PG-E								
		Terminal Block Con-	1 m	JUSP-TA50PG-1-E								
4	I/O Signal (with cable)		2 m	JUSP-TA50PG-2-E								
		Cable with Loose Wires	1 m	JZSP-CSI01-1-E								
		at One End (loose wires								2 m	JZSP-CSI01-2-E	
		on peripheral device end)	3 m	JZSP-CSI01-3-E								
		Soldered Conn	ector Kit	JZSP-CSI9-2-E								
		Connector-	0.5 m	JUSP-TA26P-E								
		Terminal Block Con-	1 m	JUSP-TA26P-1-E								
\$	I/O Signal Cables verter Unit (with cable)		2 m	JUSP-TA26P-2-E								
	Cable		1 m	JZSP-CSI02-1-E	I							
		at One End (loose wires	2 m	JZSP-CSI02-2-E								
		on peripheral device end)	3 m	JZSP-CSI02-3-E								

Cables and Peripheral Devices Cables for SERVOPACKs

Code	N	ame	Length (L)	Order Number	Appearance
		Soldered Conn	ector Kit	DP9420007-E	
		Connector-	0.5 m	JUSP-TA36P-E	
		Terminal Block Con-		JUSP-TA36P-1-E	
6	I/O Signal Cables	verter Unit (with cable)	2 m	JUSP-TA36P-2-E	
		Cable with	1 m	JZSP-CSI03-1-E	
		Loose Wires	2 m	JZSP-CSI03-2-E	
		at One End (loose wires on peripheral device end)	3 m	JZSP-CSI03-3-E	
		Cables with	1 m	JZSP-CVH03-01-E	
	Safety	Connectors*3	3 m	JZSP-CVH03-03-E	E=••••••••••••••••••••••••••••••••••••
0	Function Device Cable	Connector Kit*	1	Contact Tyco Electronic Product name: Industria nector Kit Model number: 201359	al Mini I/O D-shape Type 1 Plug Con-
			0.5 m	JEPMC-W6002-A5-E	
		Cables with	1 m	JEPMC-W6002-01-E	
			3 m	JEPMC-W6002-03-E	
			5 m	JEPMC-W6002-05-E	
		Connectors	10 m	JEPMC-W6002-10-E	
		on Both Ends	20 m	JEPMC-W6002-20-E	
			30 m	JEPMC-W6002-30-E	
	MECHA-		40 m	JEPMC-W6002-40-E	
	TROLINK-II		50 m	JEPMC-W6002-50-E	
8	Communi-		0.5 m	JEPMC-W6003-A5-E	
	cations		1 m	JEPMC-W6003-01-E	
	Cables	Cables with	3 m	JEPMC-W6003-03-E	
		Connectors	5 m	JEPMC-W6003-05-E	
		on Both Ends (with ferrite	10 m	JEPMC-W6003-10-E	
		cores)	20 m	JEPMC-W6003-20-E	
		,	30 m	JEPMC-W6003-30-E	
			40 m	JEPMC-W6003-40-E	
		Terminators	50 m	JEPMC-W6003-50-E JEPMC-W6022-E	

Code	N	ame	Length (L)	Order Number	Appearance
			0.2 m	JEPMC-W6012-A2-E	
			0.5 m	JEPMC-W6012-A5-E	
			1 m	JEPMC-W6012-01-E	
			2 m	JEPMC-W6012-02-E	
		Cables with	3 m	JEPMC-W6012-03-E	, L ,
		Connectors	4 m	JEPMC-W6012-04-E	
		on Both Ends	5 m	JEPMC-W6012-05-E	[=-\$••••[]]][][]][]][]][]][]][]][]][]][]][
			10 m	JEPMC-W6012-10-E	
			20 m	JEPMC-W6012-20-E	
	MECHA-		30 m	JEPMC-W6012-30-E	
9	TROLINK-III Communi-		50 m	JEPMC-W6012-50-E	
9	cations	Cables with	10 m	JEPMC-W6013-10-E	
	Cables	Connectors	20 m	JEPMC-W6013-20-E	la
		on Both Ends	30 m	JEPMC-W6013-30-E	
		(with core)	50 m	JEPMC-W6013-50-E	
			0.5 m	JEPMC-W6014-A5-E	
			1 m	JEPMC-W6014-01-E	
		Cable with	3 m	JEPMC-W6014-03-E	, L ,
		Loose Wires	5 m	JEPMC-W6014-05-E	[==∲ €3][0]
		at One End	10 m	JEPMC-W6014-10-E	
			30 m	JEPMC-W6014-30-E	
			50 m	JEPMC-W6014-50-E	


*1. This Converter Cable is required to use the Σ -III-series Digital Operator (JUSP-OP05A) for Σ -7-series SERVO-PACKs.

*2. If you use a MECHATROLINK-III Communications Reference SERVOPACK, this Converter Cable is required to prevent the cable from disconnecting from the Digital Operator.

*3. When using safety functions, connect this Cable to the safety function devices. When not using safety functions, connect the enclosed Safety Jumper Connector to the SERVOPACK.

*4. Use the Connector Kit when you make cables yourself.

Peripheral Devices

- *1. The peripheral devices are described using a MECHATROLINK-III Communications Reference SERVOPACK as an example. The shapes of the connectors may be different for other interfaces.
- *2. The connected devices depend on the interface. For MECHATROLINK-II communications references: Other MECHATROLINK-II stations For analog voltage/pulse train references: There is no CN6 connector.
- *3. A Holding Brake Power Supply Unit is required to use a Servomotor with a Holding Brake. Holding Brake Power Supply Units for 24 VDC are not provided by Yaskawa. Obtain these from other manufacturers. Never connect Holding Brake Power Supply Units with different output voltages to a SERVOPACK. Overcurrent may result in burning in the brake.
- *4. If you use a Servomotor with a Holding Brake, select a brake relay according to the power supply voltage and current of the brake. Yaskawa does not recommend any particular brake relays. Select an appropriate brake relay using the selection method of the brake relay manufacturer.
- *5. The power supply for the holding brake is not provided by Yaskawa. Select a power supply based on the holding brake specifications. If you use a 24-V brake, install a separate power supply for the 24-VDC power supply from other power supplies, such as the one for the I/O signals of the CN1 connector. If the power supply is shared, the I/O signals may malfunction.

Peripheral Device Selection Table

Main	SER	VOPACK						
Circuit Power Supply	Maximum Applicable Motor Capacity [kW]	Model SGD7S-	Model SGD7W-	Noise Filter ^{*1}	DC Reactor ^{*2}	Magnetic Contactor	Surge Absorber	Digital Operator
	0.05	R70A	-					
	0.1	R90A	-					
	0.2	1R6A	-	HF3010C-SZC		SC-03		
	0.4	2R8A	1R6A		X5061			
	0.5	3R8A	_					
	0.75	5R5A	2R8A	HF3020C-SZC				
Three- phase, 200	1.0	7R6A	_			SC-4-1	LT- C32G801WS	
	1.5	120A	5R5A		X5060			
VAC	2.0	180A	7R6A		00067	SC-5-1		
	3.0	200A	_	HF3030C-SZC	X5059	50-5-1		
	5.0	330A	_	HF3050C-SZC	X5068	SC-N1		JUSP- OP05A-1-E
	6.0	470A	_	HF30500-520		50-INT		
	7.5	550A	_	HF3060C-SZC		SC-N2		
	11	590A	_		_	SC-N2S		
	15	780A	-	HF3100C-UQB		SC-N3		
	0.05	R70A	-		X5071			
	0.1	R90A	-	HF2010A-UPF	X307 T	SC-03		
Single-	0.2	1R6A	_	TILZUTUA-UFT	X5070	30-03		
phase,	0.4	2R8A	1R6A		X5069		LT-	
200 VAC	0.75	5R5A	2R8A	HF2020A-UPF- 2BB	X5079	SC-4-1	C12G801WS	
	1.5	-	5R5A	HF2030A-UPF- 2BB	X5078	SC-5-1		
	Device			Inquiries				

Device	Inquiries
Noise Filters	
Surge Absorbers	Yaskawa Controls Co., Ltd.
DC Reactors	
Magnetic Contactors	Fuji Electric FA Components & Systems Co., Ltd.

*1. Some Noise Filters have large leakage currents. The grounding conditions also affect the size of the leakage current. If necessary, select an appropriate leakage detector or leakage breaker taking into account the ground-ing conditions and the leakage current from the Noise Filter.

*2. The last digit of an RoHS-compliant serial number is R. Consult with Yaskawa Controls Co., Ltd. for RoHS-compliant reactors.

Note: 1. Consult the manufacturer for details on peripheral devices.

2. Refer to the following section for information on Digital Operator Converter Cables.

3. Refer to the following manual for the following information.

• Dimensional drawings, ratings, and specifications of peripheral devices

[] Σ-7-Series AC Servo Drive Peripheral Device Selection Manual (Manual No.: SIEP S800001 32)

Molded-case Circuit Breakers and Fuses

Use a molded-case circuit breaker and fuse to protect the power supply line. They protect the power line by shutting OFF the circuit when overcurrent is detected. Select these devices based on the information in the following tables.

Note: The following tables also provide the net values of the current capacity and inrush current. Select a fuse and a molded-case circuit breaker that meet the following conditions.

- Main circuit and control circuit: No breaking at three times the current value given in the table for 5 s.
- Inrush current: No breaking at the current value given in the table for 20 ms.

Σ -7S SERVOPACKs

	Maximum		Power Supply	Current	Capacity	Inrush	Current
Main Circuit Power Supply	Applicable Motor Capacity [kW]	SERVOPACK Model SGD7S-	Capacity per SERVOPACK [kVA]*	Main Circuit [Arms] [*]	Control Power Supply [Arms]	Main Circuit [A0-p]	Control Power Supply [A0-p]
	0.05	R70A	0.2	0.4			
	0.1	R90A	0.3	0.8			
	0.2	1R6A	0.5	1.3			
	0.4	2R8A	1.0	2.5	0.2		
	0.5	3R8A	1.3	3.0	0.2	34	
	0.75	5R5A	1.6	4.1			
	1.0	7R6A	2.3	5.7			
Three-phase, 200 VAC	1.5	120A	3.2	7.3			
200 1110	2.0	180A	4.0	10	0.25		
	3.0	200A	5.9	15	0.25		34
	5.0	330A	7.5	25			-04
	6.0	470A	10.7	29	0.3	68	
	7.5	550A	14.6	37			
	11	590A	21.7	54	0.4	114	
	15	780A	29.6	73	0.4	114	
	0.05	R70A	0.2	0.8			
Circula ralazza	0.1	R90A	0.3	1.6			
Single-phase, 200 VAC	0.2	1R6A	0.6	2.4	0.2	34	
200 VAO	0.4	2R8A	1.2	5.0			
	0.75	5R5A	1.9	8.7			

* This is the net value at the rated load.

Σ-7W SERVOPACKs

	Maximum		Power Supply	Current Capacity		Inrush Current	
Main Circuit Power Supply	Applicable Motor Capacity per Axis [kW]	SERVOPACK Model SGD7W-	Capacity per SERVOPACK [kVA]*1	Main Circuit [Arms] ^{*1}	Control Power Supply [Arms]	Main Circuit [A0-p]	Control Power Supply [A0-p]
	0.2	1R6A	1.0	2.5			
Three-phase,	0.4	2R8A	1.9	4.7			
200 VAC	0.75	5R5A	3.2	7.8			
	1.0	7R6A	4.5	11	0.25	34	34
	0.2	1R6A	1.3	5.5			
Single-phase, 200 VAC	0.4	2R8A	2.4	11			
200 VAO	0.75	5R5A*2	2.7	12			

*1. This is the net value at the rated load.

*2. If you use the SGD7W-5R5A with a single-phase 200-VAC power supply input, use a load ratio of 65% max.

SERVOPACK Main Circuit Wires

This section describes the main circuit wires for SERVOPACKs.

These specifications are based on IEC/EN 61800-5-1, UL 61800-5-1, and CSA C22.2 No.14. 1. To comply with UL standards, use UL-compliant wires.

2. Use copper wires with a rated temperature of 75° or higher.

3. Use copper wires with a rated withstand voltage of 300 V or higher.

Note: To use 600-V heat-resistant polyvinyl chloride-insulated wire (HIV), use the following table as reference for the applicable wires.

• The specified wire sizes are for three bundled leads when the rated current is applied with a surrounding air temperature of 40°C.

• Select the wires according to the surrounding air temperature.

Three-phase, 200-VAC Wires for Σ -7S SERVOPACKs

SERVOPACK Model SGD7S-	Terminals		Wire Size	Screw Size	Tightening Torque [N∙m]
	Main Circuit Power Sup- ply Cable	L1, L2, L3			
	Servomotor Main Circuit Cable*	U, V, W			
R70A	Control Power Supply Cable	L1C, L2C	- AWG16 (1.25 mm ²)	_	_
	External Regenerative Resistor Cable	B1/⊕, B2			
	Ground cable		AWG14 (2.0 mm ²) min.	M4	1.2 to 1.4
	Main Circuit Power Sup- ply Cable	L1, L2, L3			
	Servomotor Main Circuit Cable*	U, V, W	- AWG16 (1.25 mm ²)		-
R90A	Control Power Supply Cable	L1C, L2C	AWG16 (1.25 mm ⁻)	_	_
	External Regenerative Resistor Cable	B1/⊕, B2			
	Ground cable		AWG14 (2.0 mm ²) min.	M4	1.2 to 1.4
	Main Circuit Power Sup- ply Cable	L1, L2, L3			
	Servomotor Main Circuit Cable*	U, V, W	$A = (1, 0.5, mm^2)$	_	
1R6A	Control Power Supply Cable	L1C, L2C	- AWG16 (1.25 mm ²)		_
	External Regenerative Resistor Cable	B1/⊕, B2			
	Ground cable		AWG14 (2.0 mm ²) min.	M4	1.2 to 1.4
	Main Circuit Power Sup- ply Cable	L1, L2, L3			
	Servomotor Main Circuit Cable*	U, V, W	$\Delta W = 16 (1.05 \text{ mm}^2)$		_
2R8A	Control Power Supply Cable	L1C, L2C	- AWG16 (1.25 mm ²)		_
	External Regenerative Resistor Cable	B1/⊕, B2]		
	Ground cable		AWG14 (2.0 mm ²) min.	M4	1.2 to 1.4

Cables and Peripheral Devices Peripheral Devices

SERVOPACK Model SGD7S-	Terminals		Wire Size	Screw Size	Tightening Torque [N∙m]	
	Main Circuit Power Sup- ply Cable	L1, L2, L3				
	Servomotor Main Circuit Cable*	U, V, W	-			
3R8A	Control Power Supply Cable	L1C, L2C	- AWG16 (1.25 mm ²)	_	_	
	External Regenerative Resistor Cable	B1/⊕, B2				
	Ground cable		AWG14 (2.0 mm ²) min.	M4	1.2 to 1.4	
	Main Circuit Power Sup- ply Cable	L1, L2, L3				
	Servomotor Main Circuit Cable*	U, V, W	AWG16 (1.25 mm ²)	_	_	
5R5A	Control Power Supply Cable	L1C, L2C	Awd10 (1.23 mm)			
	External Regenerative Resistor Cable	B1/⊕, B2				
	Ground cable		AWG14 (2.0 mm ²) min.	M4	1.2 to 1.4	
	Main Circuit Power Sup- ply Cable	L1, L2, L3				
	Servomotor Main Circuit Cable*	U, V, W	AWG16 (1.25 mm ²)	_	_	
7R6A	Control Power Supply Cable	L1C, L2C	Awd10 (1.23 mm)			
	External Regenerative Resistor Cable	B1/⊕, B2				
	Ground cable		AWG14 (2.0 mm ²) min.	M4	1.2 to 1.4	
	Main Circuit Power Sup- ply Cable	L1, L2, L3	- AWG14 (2.0 mm ²)			
	Servomotor Main Circuit Cable*	U, V, W	AWG14 (2.0 mm)		_	
120A	Control Power Supply Cable	L1C, L2C	- AWG16 (1.25 mm ²)			
	External Regenerative Resistor Cable	B1/⊕, B2	AWG10 (1.23 mm)			
	Ground cable		AWG14 (2.0 mm ²) min.			
	Main Circuit Power Sup- ply Cable	L1, L2, L3	AWG14 (2.0 mm ²)			
	Servomotor Main Circuit Cable*	U, V, W	AWG10 (5.5 mm ²)			
180A	Control Power Supply Cable	L1C, L2C	- AWG16 (1.25 mm ²)			
	External Regenerative Resistor Cable	B1/⊕, B2	AWG10 (1.23 mm)			
	Ground cable		AWG14 (2.0 mm ²) min.	M4	1.2 to 1.4	
200A	Main Circuit Power Sup- ply Cable	L1, L2, L3	AWG12 (3.5 mm ²)			
	Servomotor Main Circuit Cable*	U, V, W	AWG10 (5.5 mm ²)			
	Control Power Supply Cable	L1C, L2C				
	External Regenerative Resistor Cable	B1/⊕, B2	- AWG16 (1.25 mm ²)			
	Ground cable		AWG14 (2.0 mm ²) min.			

SERVOPACK Model SGD7S-	Terminals		Wire Size	Screw Size	Tightening Torque [N∙m]
	Main Circuit Power Sup- ply Cable	L1, L2, L3	AWG8 (8.0 mm ²)		
	Servomotor Main Circuit Cable*	U, V, W	Awdo (0.0 mm)		
330A	Control Power Supply Cable	L1C, L2C	AWG16 (1.25 mm ²)	M4	1.2 to 1.4
	External Regenerative Resistor Cable	B1/⊕, B2	AWG14 (2.0 mm ²)		
	Ground cable		AWG14 (2.0 mm ²) min.		
	Main Circuit Power Sup- ply Cable	L1, L2, L3	AWG8 (8.0 mm ²)		
	Servomotor Main Circuit Cable*	U, V, W	AWG6 (14 mm ²)		
470A	Control Power Supply Cable	L1C, L2C	AWG16 (1.25 mm ²)		
	External Regenerative Resistor Cable	B1/⊕, B2	AWG14 (2.0 mm ²)		2.2 to 2.4
	Ground cable		AWG14 (2.0 mm ²) min.		
	Main Circuit Power Sup- ply Cable	L1, L2, L3	AWG8 (8.0 mm ²)	M5	
	Servomotor Main Circuit Cable*	U, V, W	AWG4 (22 mm ²) AWG16 (1.25 mm ²)		
550A	Control Power Supply Cable	L1C, L2C			
	External Regenerative Resistor Cable	B1/⊕, B2	AWG10 (5.5 mm ²)		
	Ground cable		AWG14 (2.0 mm ²) min.		
	Main Circuit Power Supply Cable	L1, L2, L3	$\Delta M (0.1, (0.0, mm^2))$		
	Servomotor Main Circuit Cable*	U, V, W	- AWG4 (22 mm ²)		
590A	Control Power Supply Cable	L1C, L2C	AWG16 (1.25 mm ²)		
	External Regenerative Resistor Cable	B1/⊕, B2	AWG10 (5.5 mm ²)		
	Ground cable		AWG14 (2.0 mm ²) min.	MC	074000
	Main Circuit Power Sup- ply Cable	L1, L2, L3	- AWG3 (30 mm ²)	M6	2.7 to 3.0
	Servomotor Main Circuit Cable*	U, V, W			
780A	Control Power Supply Cable	L1C, L2C	AWG16 (1.25 mm ²)		
	External Regenerative Resistor Cable	B1/⊕, B2	AWG8 (8.0 mm ²)		
	Ground cable		AWG14 (2.0 mm ²) min.		

* If you do not use the recommended Servomotor Main Circuit Cable, use this table to select wires.

Single-phase, 200-VAC Wires for $\Sigma\textsc{-7S}$ SERVOPACKs

SERVOPACK Model SGD7S-	Terminals		Wire Size	Screw Size	Tightening Torque [N·m]
	Main Circuit Power Sup- ply Cable	L1, L2	-		
	Servomotor Main Circuit Cable*	U, V, W	AWG16 (1.25 mm ²)	_	_
R70A	Control Power Supply Cable	L1C, L2C	///////////////////////////////////////		
	External Regenerative Resistor Cable	B1/⊕, B2			
	Ground cable		AWG14 (2.0 mm ²) min.	M4	1.2 to 1.4
	Main Circuit Power Sup- ply Cable	L1, L2			
	Servomotor Main Circuit Cable*	U, V, W	$\Delta M(C_{1}C_{1}) = mm^{2}$		
R90A	Control Power Supply Cable	L1C, L2C	- AWG16 (1.25 mm ²)	_	_
	External Regenerative Resistor Cable	B1/⊕, B2			
	Ground cable		AWG14 (2.0 mm ²) min.	M4	1.2 to 1.4
	Main Circuit Power Sup- ply Cable	L1, L2, L3			
	Servomotor Main Circuit Cable*	U, V, W			
1R6A	Control Power Supply Cable	L1C, L2C	- AWG16 (1.25 mm ²)	_	_
	External Regenerative Resistor Cable	B1/⊕, B2			
	Ground cable		AWG14 (2.0 mm ²) min.	M4	1.2 to 1.4
	Main Circuit Power Sup- ply Cable	L1, L2, L3			
	Servomotor Main Circuit Cable*	U, V, W	$\Delta M(C_{1}C_{1}) = mm^{2}$		
2R8A	Control Power Supply Cable	L1C, L2C	AWG16 (1.25 mm ²)		
	External Regenerative Resistor Cable	B1/⊕, B2			
	Ground cable		AWG14 (2.0 mm ²) min.	M4	1.2 to 1.4
	Main Circuit Power Sup- ply Cable	L1, L2, L3	AWG14 (2.0 mm ²)		
	Servomotor Main Circuit Cable*	U, V, W		_	_
5R5A	Control Power Supply Cable	L1C, L2C	AWG16 (1.25 mm ²)	-	
	External Regenerative Resistor Cable	B1/⊕, B2			
	Ground cable		AWG14 (2.0 mm ²) min.	M4	1.2 to 1.4

* If you do not use the recommended Servomotor Main Circuit Cable, use this table to select wires.

Three-phase, 200-VAC Wires for Σ -7W SERVOPACKs

SERVOPACK Model SGD7W-	Terminals		Wire Size	Screw Size	Tightening Torque [N⋅m]
	Main Circuit Power Sup- ply Cable	L1, L2, L3			
	Servomotor Main Circuit Cable*	UA, VA, WA, UB, VB, WB	AWG16 (1.25 mm ²)	_	_
1R6A	Control Power Supply Cable	L1C, L2C			
	External Regenerative Resistor Cable	B1/⊕, B2			
	Ground cable		AWG14 (2.0 mm ²) min.	M4	1.2 to 1.4
	Main Circuit Power Sup- ply Cable	L1, L2, L3	AWG14 (2.0 mm ²)		
	Servomotor Main Circuit Cable*	UA, VA, WA, UB, VB, WB		_	_
2R8A	Control Power Supply Cable	L1C, L2C	AWG16 (1.25 mm ²)		
	External Regenerative Resistor Cable	B1/⊕, B2	-		
	Ground cable		AWG14 (2.0 mm ²) min.	M4	1.2 to 1.4
	Main Circuit Power Supply Cable	L1, L2, L3	AWG14 (2.0 mm ²)		
	Servomotor Main Circuit Cable*	UA, VA, WA, UB, VB, WB	AWG16 (1.25 mm ²)	_	_
5R5A	Control Power Supply Cable	L1C, L2C			
	External Regenerative Resistor Cable	B1/⊕, B2	AWG14 (2.0 mm ²)		
	Ground cable		AWG14 (2.0 mm ²) min.	M4	1.2 to 1.4
	Main Circuit Power Sup- ply Cable	L1, L2, L3	AWG14 (2.0 mm ²)		
7R6A	Servomotor Main Circuit Cable*	UA, VA, WA, UB, VB, WB	AWG16 (1.25 mm ²)	_	_
	Control Power Supply Cable	L1C, L2C			
	External Regenerative Resistor Cable	B1/⊕, B2	AWG14 (2.0 mm ²)		
	Ground cable		AWG14 (2.0 mm ²) min.	M4	1.2 to 1.4

* If you do not use the recommended Servomotor Main Circuit Cable, use this table to select wires.

Single-phase, 200-VAC Wires for Σ -7W SERVOPACKs

SERVOPACK Model SGD7W-	Terminals		Wire Size	Screw Size	Tightening Torque [N∙m]	
	Main Circuit Power Sup- ply Cable	L1, L2, L3				
	Servomotor Main Circuit Cable*	UA, VA, WA, UB, VB, WB	AWG16 (1.25 mm ²)	_	_	
1R6A	Control Power Supply Cable	L1C, L2C				
	External Regenerative Resistor Cable	B1/⊕, B2				
	Ground cable		AWG14 (2.0 mm ²) min.	M4	1.2 to 1.4	
	Main Circuit Power Sup- ply Cable	L1, L2, L3	AWG14 (2.0 mm ²)			
_	Servomotor Main Circuit Cable*	UA, VA, WA, UB, VB, WB		_	_	
2R8A	Control Power Supply Cable	L1C, L2C	AWG16 (1.25 mm ²)			
	External Regenerative Resistor Cable	B1/⊕, B2				
	Ground cable		AWG14 (2.0 mm ²) min.	M4	1.2 to 1.4	
	Main Circuit Power Sup- ply Cable	L1, L2, L3	AWG14 (2.0 mm ²)			
	Servomotor Main Circuit Cable*	UA, VA, WA, UB, VB, WB	AWG16 (1.25 mm ²)	_	_	
5R5A	Control Power Supply Cable	L1C, L2C				
	External Regenerative Resistor Cable	B1/⊕, B2	AWG14 (2.0 mm ²)			
	Ground cable		AWG14 (2.0 mm ²) min.	M4	1.2 to 1.4	

* If you do not use the recommended Servomotor Main Circuit Cable, use this table to select wires.

Wire Types

The following table shows the wire sizes and allowable currents for three bundled leads.

HIV Specificatio	ons ^{*1}	Allowable Current	at Surrounding Air Te	emperatures [Arms]
Nominal Cross-sectional Area [mm ²]	Configuration [Wires/mm ²]	30°C	40°C	50°C
0.9	7/0.4	15	13	11
1.25	7/0.45	16	14	12
2.0	7/0.6	23	20	17
3.5	7/0.8	32	28	24
5.5	7/1.0	42	37	31
8.0	7/1.2	52	46	39
14.0	7/1.6	75	67	56
22.0	7/2.0	98	87	73
38.0	7/2.6	138	122	103

*1. This is reference data based on JIS C3317 600-V-grade heat-resistant polyvinyl chloride-insulated wires (HIV).

Crimp Terminals and Insulating Sleeves

If you use crimp terminals for wiring, use insulating sleeves. Do not allow the crimp terminals to come close to adjacent terminals or the case.

To comply with UL standards, you must use UL-compliant closed-loop crimp terminals and insulating sleeves for the main circuit terminals. Use the tool recommended by the crimp terminal manufacturer to attach the crimp terminals.

The following tables give the recommended tightening torques, closed-loop crimp terminals, and insulating sleeves in sets. Use the set that is suitable for your model and wire size.

$\Sigma\text{-7S}$ SERVOPACKs for Use with Three-Phase, 200-VAC Power Supply

SERVOPACK Model: SGD7S-	Main Circuit	Screw Size	Tightening Torque	Crimp Terminal Horizontal	Recom- mended Wire	Crimp Terminal Model	Crimping Tool	Die	Insulating Sleeve Model					
	Terminals	0126	[N∙m]	Width	Size	(From J.	S.T. Mfg. (Co., Ltd.)	(Tokyo Dip Co., Ltd.)					
R70A, R90A,	Connector					-								
1R6A, 2R8A, 3R8A, 5R5A, 7R6A, or 120A		M4	1.2 to 1.4	10 mm max.	AWG14 (2.0 mm ²)	R2-4	YHT- 2210	_	_					
	Torroi				AWG10 (5.5 mm ²)	5.5-S4		_	TP-005					
180A or 200A	Termi- nal block	M4	1.2 to 1.4	7.7 mm max.	AWG14 (2.0 mm ²)	2-M4	YHT- 2210	-	TP-003					
					AWG16 (1.25 mm ²)			-	11-003					
		M4	1.2 to 1.4	10 mm max.	AWG14 (2.0 mm ²)	R2-4	YHT- 2210	-	-					
	Termi- nal M [,] block	M4		9.9 mm max.	AWG8 (8.0 mm ²)	8-4NS	YPT- 60N	TD-121 TD-111	TP-008					
330A			1.2 to 1.4		AWG14 (2.0 mm ²)	R2-4	YHT-	-	TP-003					
					AWG16 (1.25 mm ²)		2210	-						
		M4	1.2 to 1.4	10 mm max.	AWG14 (2.0 mm ²)	R2-4	YHT- 2210	-	_					
									AWG4 (22 mm ²)	22-S5		TD-123 TD-112	TP-022	
					AWG6 (14 mm ²)	R14-5	YPT- 60N	TD-122 TD-111	TP-014					
	Termi- nal	M5	2.2 to	13 mm	AWG8 (8.0 mm ²)	R8-5		TD-121 TD-111	TP-008					
470A or 550A	block	NIC	2.4	max.	AWG10 (5.5 mm ²)	R5.5-5		-	TP-005					
					AWG14 (2.0 mm ²)	R2-5	YHT- 2210	-	TP-003					
										AWG16 (1.25 mm ²)			_	11 000
		M5	2.2 to 2.4	12 mm max.	AWG14 (2.0 mm ²)	R2-5	YHT- 2210	-	_					

Peripheral Devices

SERVOPACK Model: SGD7S-	Screw		crew Torque Terminal I		Recom- mended Wire	Crimp Terminal Model	Crimping Tool	Die	Insulating Sleeve Model
Wodel. 3GD73-	Terminals	5120	[N∙m]	Horizontal Width	Size	(From J.	Co., Ltd.)	(Tokyo Dip Co., Ltd.)	
					AWG3 (30 mm ²)	38-S6		TD-124 TD-112	TP-038
		Termi-			AWG4 (22 mm ²)	R22-6	YPT- 60N	TD-123 TD-112	TP-022
	-		2.7 to	18 mm max.	AWG8 (8.0 mm ²)	R8-6		TD-121 TD-111	TP-008
590A or 780A	nal block	M6	3.0		AWG10 (5.5 mm ²)	R5.5-6		-	TP-005
					AWG14 (2.0 mm ²)	R2-6	YHT- 2210	-	TP-003
					AWG16 (1.25 mm ²)	H2-0		-	11-003
		M6	2.7 to 3.0	12 mm max.	AWG14 (2.0 mm ²)	R2-6	YHT- 2210	_	_

$\Sigma\text{-7S}$ SERVOPACKs for Use with Single-Phase, 200-VAC Power Supply

SERVOPACK Model: SGD7S-	Main Circuit	Screw Size	Torque Terminal mended	Recom- mended Wire	Crimp Terminal Model	Crimping Tool	Die	Insulating Sleeve Model	
	Terminals	Terminals		Width	Size	(From J.S.T. Mfg. Co., Ltd.)		(Tokyo Dip Co., Ltd.)	
R70A, R90A,	Connector					-			
1R6A, 2R8A, or 5R5A	(=)	M4	1.2 to 1.4	10 mm max.	AWG14 (2.0 mm ²)	R2-4	YHT- 2210	_	-

Σ -7W SERVOPACKs for Use with Three-Phase, 200-VAC Power Supply

SERVOPACK Model: SGD7W-	Main	Recom- mended	Crimp Terminal Model	Crimping Tool	Die	Insulating Sleeve Model			
Wodel. SGD7W-		50	IN•m			(From J.S.T. Mfg. Co., Ltd.)			(Tokyo Dip Co., Ltd.)
1R6A, 2R8A,	Connector					-			
5R5A, or 7R6A		M4	1.2 to 1.4	10 mm max.	AWG14 (2.0 mm ²)	R2-4	YHT- 2210	_	-

$\Sigma\text{-7W}$ SERVOPACKs for Use with Single-Phase, 200-VAC Power Supply

SERVOPACK Model: SGD7W-	Main Circuit	Screw Size	Tightening Torque	Terminal mended		Crimp Terminal Model	Crimping Tool	Die	Insulating Sleeve Model
	Terminals	5126	[N·m] Width		Size	(From J.S.T. Mfg. Co., Ltd.)		(Tokyo Dip Co., Ltd.)	
	Connector					-			
1R6A, 2R8A, or 5R5A		M4	1.2 to 1.4	10 mm max.	AWG14 (2.0 mm ²)	R2-4	YHT- 2210	_	_

Surge Absorbers for Holding Brakes (Varistors) and Diodes

Surge Absorbers for Holding Brakes (Varistors)

Select an appropriate Surge Absorber for the power supply voltage and current of the brake. Surge absorbers are not provided by Yaskawa.

Brake Power Supply	Voltage	24 VDC				
Surge Absorber Manufacturer		Nippon Chemi-Con Corporation	SEMITEC Corporation			
	1 A max.	TNR5V121K	Z5D121			
Brake Rated Current	2 A max.	TNR7V121K	Z7D121			
Brake Raled Gurreni	4 A max.	TNR10V121K	Z10D121			
	8 A max.	TNR14V121K	Z15D121			

Diodes for Holding Brakes

Select a diode for a holding brake with a rated current that is greater than that of the brake and with the recommended withstand voltage given in the following table. Diodes are not provided by Yaskawa.

Holding Brake Power Su	Withstand Voltage			
Rated Output Voltage	Rated Output Voltage Input Voltage			
24 VDC	200 V	100 V to 200 V		

Regenerative Resistors

Types of Regenerative Resistors

The following regenerative resistors can be used.

- Built-in regenerative resistors: Some models of SERVOPACKs have regenerative resistors built into them.
- External regenerative resistors: These resistors are used when the smoothing capacitor and builtin regenerative resistor in the SERVOPACK cannot consume all of the regenerative power. Use Yaskawa's SigmaJunmaSize+, an AC Servo drive capacity selection program, to determine if a regenerative resistor is required.

Note: If you use an external regenerative resistor, you must change the setting of parameter Pn600.

Selection Table

SERVOPA	CK Model	Built-In Regen-	External Regen-	Contents
SGD7S-	SGD7W-	erative Resistor	erative Resistor	Contents
R70A, R90A, 1R6A, 2R8A	_	None	Basically not required	There is no built-in regenerative resistor, but nor- mally an external regenerative resistor is not required. Install an external regenerative resistor when the smoothing capacitor in the SERVOPACK cannot process all the regenerative power. ^{*1}
3R8A, 5R5A, 7R6A, 120A, 180A, 200A, 330A	1R6A, 2R8A, 5R5A, 7R6A	Standard fea- ture ^{*2}	Basically not required	A built-in regenerative resistor is provided as a standard feature. Install an external regenerative resistor when the built-in regenerative resistor cannot process all the regenerative power.*1
470A, 550A, 590A, 780A	-	None	Required.*3	A built-in regenerative resistor is not provided. An External Regenerative Resistor is required. If the External Regenerative Resistor is not con- nected to the SERVOPACK, a Regeneration Alarm (A.300) will occur.

*1. Use Yaskawa's SigmaJunmaSize+, an AC Servo drive capacity selection program, to select an external regenerative resistor.

*2. Refer to the following section for the specifications of built-in regenerative resistors.

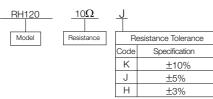
*3. Regenerative Resistor Units are available. Refer to the following sections for details.

Built-In Regenerative Resistor

The following table gives the specifications of the built-in regenerative resistors in the SERVOPACKs and the amount of regenerative power (average values) that they can process.

SERVOPACK Model		Built-In Regenerative Resistor		Regenerative Power Processing Capacity of	Minimum Allowable	
SGD7S-	SGD7W-	Resistance [Ω]	Capacity [W]	Built-In Regenerative Resistor [W]	Resistance [Ω]	
R70A, R90A, 1R6A, 2R8A	-	-	-	-	40	
3R8A, 5R5A, 7R6A	1R6A, 2R8A	40	40	8	40	
120A	_	20	60	10	20	
180A, 200A	5R5A, 7R6A	12	60	16	12	
330A	_	8	180	36	8	
470A	-	(6.25) ^{*1}	(880) ^{*1}	(180) ^{*1}	5.8	
550A, 590A, 780A	-	(3.13) ^{*2}	(1760) ^{*2}	(350) ^{*2}	2.9	

*1. Values in parentheses are for the optional JUSP-RA04-E Regenerative Resistor Unit.

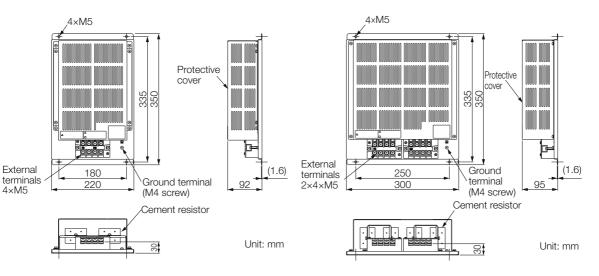

*2. Values in parentheses are for the optional JUSP-RA05-E Regenerative Resistor Unit.

External Regenerative Resistors

Model	Specification	Inquiries	Manufacturer
RH120	70 W, 1 Ω to 100 Ω		
RH150	90 W, 1 Ω to 100 Ω		
RH220 or RH220B	120 W, 1 Ω to 100 Ω	Yaskawa Controls Co., Ltd.	Iwaki Musen Kenkyusho Co., Ltd.
RH300C	200 W, 1 k Ω to 10 k Ω		00., Etd.
RH500	300 W, 10 Ω to 30 Ω		

Note: 1. Consult Yaskawa Controls Co., Ltd. if you require a RoHS-compliant resistor.

2. Consult Yaskawa Controls Co., Ltd. for the model numbers and specifications of resistors with thermostats.


Regenerative Resistor Units

SERVOPACK Model: SGD7S-	Regenerative Resistor Unit Model	Specifications	Allowable Power Loss
470A	JUSP-RA04-E	6.25 Ω, 880 W	180 W
550A, 590A, or 780A	JUSP-RA05-E	3.13 Ω, 1,760 W	350 W

Note: If you use only the above Regenerative Resistor Units, you do not need to change the setting of parameter Pn600.

External Dimensions

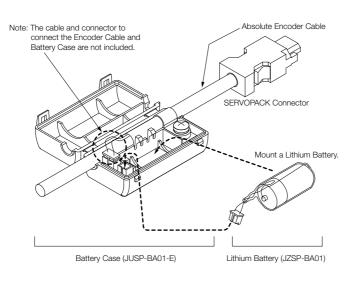
■ JUSP-RA04-E

■ JUSP-RA05-E

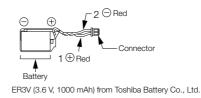
Batteries for Servomotor with Absolute Encoders

If you use an absolute encoder, you can use an Encoder Cable with a Battery Case connected to it to supply power and retain the absolute position data.

You can also retain the absolute position data by supplying power from a battery on the host controller.


The Battery Case is sold as a replacement part for the Battery Case that is included with an Absolute Encoder Cable.

Name	Order Number	Remarks
Battery Case (case only)	JUSP-BA01-E	The Encoder Cable and Battery are not included. (This is a replacement part for a damaged Battery Case.)
Lithium Battery	JZSP-BA01	This is a special battery that mounts into the Battery Case.


1. You cannot attach the Battery Case to an Incremental Encoder Cable.

2. Install the Battery Case where the surrounding air temperature is between -5°C and 60°C.

Mounting a Battery in the Battery Case

Obtain a Lithium Battery (JZSP-BA01) and mount it in the Battery Case.

Connecting a Battery to the Host Controller

Use a battery that meets the specifications of the host controller. Use an ER6VC3N Battery (3.6 V, 2,000 mAh) from Toshiba Battery Co., Ltd. or an equivalent battery.

Software

SigmaJunmaSize+: AC Servo Capacity Selection Program

You can use the SigmaJunmaSize+ to select Servomotors and SERVOPACKs. There are two versions of the software: A Web-based version and a stand-alone version.

The software supports all standard servo products sold by Yaskawa.

Features


- Provides a vast amount of new product information.
- Lets you select servo products with a wizard.
- As long as you have a connection to the Internet, you can access and use the software anytime, anywhere. (Communications are encrypted for security.)
- You can access and reuse previously entered data.

Examples of the Servo Selection Interface

Mechanism Selection View

Speed Diagram Entry View

Servomotor Selection View

100	that index them.							
	ter BE	Raine Larger		Autorated.	-	-	в	Paterness .
Ð	39807-0584	180-101	288+98	150+101	4518-921	122/w-101		Formala
DE	DOROV BOAT	IT (THEOREM	(1986-000)	1000-000	(ADDARDE)	(275-RE)		Particular and
	30807-44848	1 (206-00)	(885+00)	1100-001	(TIM-BIL)	(DESCRIPTION OF		Told Sales
0	10007-442+8	(1966-88)	(880a-000)	(188e-000)	(Troason)	(XDAHNE)		10000-000-0
•	DOMON-BEAM	3 (3100+02)	(8888-000)	(1986-001)	(8763-001)	(1Marshi)		2018-001-0
	3040V-8014	10004-001	(888a-000)	11000-0001	(ANN-OF	DOMESTIC		Contraction in such
2	30401-3844	I AND-DE	(7508-000)	11006-000	(1998-401)	(ATTAXA)		Pageret dest for
•	10801-7014	1000-001	(100-00)	1100-000	(1006-002)	(Attent)		Chille bran
•	BUNDY FARM	1 (7004-00)	(ESSNARD)	(1804-002)	11700-002	(4210-000		[10.Tavent]
0	DOHOV TADIE	1 (1004-00)	13105-0011	(1004-000)	11704-002	(APPARE		
		041 945			-]		and to the second

System Requirements

Machine Specification Entry View

Operating Conditions Selection View

SERVOPACK Selection View

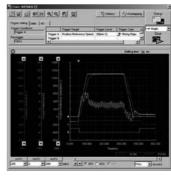
Item	System Requirement
Browser (Required for Web-base Version Only)	Internet Explorer 5.0 SP1 or higher
OS	Windows XP, Windows Vista, or Windows 7 (32-bit or 64-bit edition)
CPU	Pentium 200 MHz min.
Memory	64 MB min. (96 MB or greater recommended)
Available Hard Disk Space	20 MB min.

SigmaWin+: AC Servo Drive Engineering Tool

The SigmaWin+ Engineering Tool is used to set up and optimally tune Yaskawa $\Sigma\text{-}series$ Servo Drives.

Features

- Set parameters with a wizard.
- Display SERVOPACK data on a computer just like you would on a oscilloscope.
- Estimate moments of inertia and measure vibration frequencies.
- Display alarms and alarm diagnostics.


Setting Parameters with a Wizard

C Servers lines	
3 proper page.	
diamon commit	Strengent Selecter / 6 System Selector Services en este anches contexper service estimation experies was a constraint investigation and anches contexper services estimation devices in the investigation of the selector estimation devices of the estimation in terminal of the estimate of the selector of the estimate in terminal.
B-141-141	Claims Music Sancton Committee Sancton Sancton Sanct Longing and an interest Committee and arrange officer oncommittee Carter Sancton and Sancton Sancton Sancton
Anninests	The second state of the second state of the second state of the second states of the second s
Burneland long	September forsten Seiter gester eine mitter pelline Auf an einer som Adda Georgian tal antrige for ter einer eine mitter pelline Auf an einer som Adda ter fra Demper spreader Antrige Adas,
Los notes note	Between they Method Electrics: Settle-settle-state-state-settl
-	Charges Sarring The Charges devices in successful charges where it is a first charge with a charge the first device it days of Charges from the first on the Charges charges of the first ones.
a terrera	Disettation of the second seco

Estimating Moments of Inertia and Measuring Vibration Frequencies

Displaying SERVOPACK Data on a Computer Just Like You Would on a Oscilloscope

Displaying Alarms and Alarm Diagnostics

System Requirements

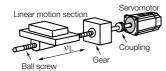
Item	System Requirement
Supported Languages	English and Japanese
OS	Windows XP, Windows Vista, or Windows 7 (32-bit or 64-bit edition)
CPU	Pentium 200 MHz min.
Memory	64 MB min. (96 MB or greater recommended)
Available Hard Disk Space	For Standard Setup: 350 MB min. (400 MB or greater recommended for installation)

MEMO

Appendices

Capacity Selection for Servomotors	340
Capacity Selection for Regenerative Resistors .	348
International Standards	364
Warranty	365

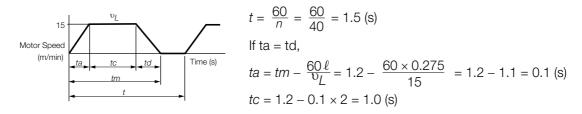
Capacity Selection for Servomotors


Selecting the Servomotor Capacity

Use Yaskawa's SigmaJunmaSize+, an AC servo drive capacity selection program, to select the Servomotor capacity. With the SigmaJunmaSize+, you can find the optimum Servomotor capacity by simply selecting and entering information according to instructions from a wizard.

Refer to the following selection examples to select Servomotor capacities with manual calculations rather than with the above software.

Capacity Selection Example for a Rotary Servomotor: For Speed Control


1. Mechanical Specifications

Item	Code	Value
Load Speed	v_{L}	15 m/min
Linear Motion Section Mass	т	250 kg
Ball Screw Length	ℓ_B	1.0 m
Ball Screw Diameter	d _B	0.02 m
Ball Screw Lead	P_B	0.01 m
Ball Screw Material Density	ρ	$7.87 \times 10^3 \text{ kg/m}^3$
Gear Ratio	R	2 (gear ratio: 1/2)
External Force on Linear Motion Section	F	0 N

Item	Code	Value
Gear and Coupling Moment of Inertia	J_{G}	$0.40 \times 10^{-4} \text{kg} \cdot \text{m}^2$
Number of Feeding Operations	n	40 operations/min
Feeding Distance	l	0.275 m
Feeding Time	tm	1.2 s max.
Friction Coefficient	μ	0.2
Mechanical Efficiency	η	0.9 (90%)

2. Operation Pattern

3. Motor Speed

• Load shaft speed $n_L = \frac{v_L}{P_B} = \frac{15}{0.01} = 1,500 \text{ (min}^{-1}\text{)}$

• Motor shaft speed
$$n_M = n_L \cdot R = 1,500 \times 2 = 3,000 \text{ (min}^{-1})$$

4. Load Torque

$$T_L = \frac{(9.8 \cdot \mu \cdot m + F) \cdot P_B}{2\pi R \cdot \eta} = \frac{(9.8 \times 0.2 \times 250 + 0) \times 0.01}{2\pi \times 2 \times 0.9} = 0.43 \text{ (N·m)}$$

5. Load Moment of Inertia

Linear motion section

$$J_{L1} = m \left(\frac{P_B}{2\pi R}\right)^2 = 250 \times \left(\frac{0.01}{2\pi \times 2}\right)^2 = 1.58 \times 10^{-4} \text{ (kg·m}^2\text{)}$$

Ball screw

$$J_B = \frac{\pi}{32} \rho \cdot \ell_B \cdot d_B^4 \cdot \frac{1}{R^2} = \frac{\pi}{32} \times 7.87 \times 10^3 \times 1.0 \times (0.02)^4 \cdot \frac{1}{2^2} = 0.31 \times 10^{-4} \, (\text{kg} \cdot \text{m}^2)$$

- Coupling $J_G = 0.40 \times 10^{-4} (\text{kg} \cdot \text{m}^2)$
- Load moment of inertia at motor shaft $J_L = J_{L1} + J_B + J_G = (1.58 + 0.31 + 0.40) \times 10^{-4} = 2.29 \times 10^{-4} \text{ (kg·m}^2)$

6. Load Moving Power

$$P_O = \frac{2\pi n_M \cdot T_L}{60} = \frac{2\pi \times 3,000 \times 0.43}{60} = 135 \text{ (W)}$$

7. Load Acceleration Power

$$Pa = \left(\frac{2\pi}{60} n_{M}\right)^{2} \frac{J_{L}}{ta} = \left(\frac{2\pi}{60} \times 3,000\right)^{2} \times \frac{2.29 \times 10^{-4}}{0.1} = 226 \text{ (W)}$$

8. Servomotor Provisional Selection

① Selection Conditions

- $T_L \leq$ Motor rated torque
- $\frac{(Po + Pa)}{2}$ < Provisionally selected Servomotor rated output < (Po + Pa)
- $n_M \leq$ Rated motor speed
- $J_L \leq$ Allowable load moment of inertia

The following Servomotor meets the selection conditions.

SGM7J-02A Servomotor

② Specifications of the Provisionally Selected Servomotor

Item	Value
Rated Output	200 (W)
Rated Motor Speed	3,000 (min ⁻¹)
Rated Torque	0.637 (N·m)
Instantaneous Maximum Torque	2.23 (N·m)
Motor Moment of Inertia	$0.263 \times 10^{-4} (\text{kg} \cdot \text{m}^2)$
Allowable Load Moment of Inertia	$0.263 \times 10^{-4} \times 15 = 3.94 \times 10^{-4} (\text{kg·m}^2)$

9. Verification of the Provisionally Selected Servomotor

• Verification of required acceleration torque:

$$T_P = \frac{2\pi n_M (J_M + J_L)}{60ta} + T_L = \frac{2\pi \times 3,000 \times (0.263 + 2.29) \times 10^{-4}}{60 \times 0.1} + 0.43$$

≈ 1.23 (N·m) < Maximum instantaneous torque...Satisfactory

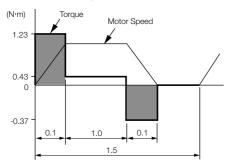
• Verification of required deceleration torque:

$$T_{S} = \frac{2\pi n_{M} (J_{M} + J_{L})}{60td} - T_{L} = \frac{2\pi \times 3,000 \times (0.263 + 2.29) \times 10^{-4}}{60 \times 0.1} - 0.43$$

 \approx 0.37 (N·m) < Maximum instantaneous torque...Satisfactory

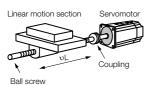
Appendices

Capacity Selection for Servomotors

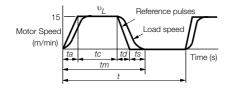

• Verification of effective torque value:

$$Trms = \sqrt{\frac{T_P^2 \cdot ta + T_L^2 \cdot tc + Ts^2 \cdot td}{t}} = \sqrt{\frac{(1.23)^2 \times 0.1 + (0.43)^2 \times 1.0 + (0.37)^2 \times 0.7}{1.5}}$$

 \approx 0.483 (N·m) < Rated torque...Satisfactory


10.Result

It has been verified that the provisionally selected Servomotor is applicable. The torque diagram is shown below.


Capacity Selection Example for a Rotary Servomotor: For Position Control

1. Mechanical Specifications

Item	Code	Value	Item	Code	Value
Load Speed	v_{L}	15 m/min	Coupling Outer Diameter	d _C	0.03 m
Linear Motion Section Mass	т	80 kg Number of Feeding Operations		n	40 rotation/min
Ball Screw Length	ℓ_B	0.8 m	Feeding Distance	l	0.25 m
Ball Screw Diameter	d _B	0.016 m	Feeding Time	tm	1.2 s max.
Ball Screw Lead	P _B	0.005 m	Electrical Stopping Precision	δ	±0.01 mm
Ball Screw Material Density	ρ	$7.87 \times 10^3 \text{ kg/m}^3$	Friction Coefficient	μ	0.2
External Force on Linear Motion Section	F	0 N	Mechanical Efficiency	η	0.9 (90%)
Coupling Mass	m _C	0.3 kg			

2. Speed Diagram

$$t = \frac{60}{n} = \frac{60}{40} = 1.5 \text{ (s)}$$

If ta = td and ts = 0.1 (s),
$$ta = tm - ts - \frac{60\ell}{\nu_L} = 1.2 - 0.1 - \frac{60 \times 0.25}{15} = 0.1 \text{ (s)}$$
$$tc = 1.2 - 0.1 - 0.1 \times 2 = 0.9 \text{ (s)}$$

3. Motor Speed

· Load shaft speed

$$n_L = \frac{v_L}{P_B} = \frac{15}{0.005} = 3,000 \text{ (min}^{-1}\text{)}$$

• Motor shaft speed Direct coupling gear ratio 1/R = 1/1

Therefore, $n_M = n_L \cdot R = 3,000 \times 1 = 3,000 \text{ (min}^{-1})$

4. Load Torque

$$T_L = \frac{(9.8 \ \mu \cdot m + F) \cdot P_B}{2\pi R \cdot \eta} = \frac{(9.8 \times 0.2 \times 80 + 0) \times 0.005}{2\pi \times 1 \times 0.9} = 0.139 \text{ (N·m)}$$

5. Load Moment of Inertia

• Linear motion section

$$J_{L1} = m \left(\frac{P_B}{2\pi R}\right)^2 = 80 \times \left(\frac{0.005}{2\pi \times 1}\right)^2 = 0.507 \times 10^{-4} \, (\text{kg} \cdot \text{m}^2)$$

• Ball screw $J_B = \frac{\pi}{32} \rho \cdot \ell_B \cdot d_B^4 = \frac{\pi}{32} \times 7.87 \times 10^3 \times 0.8 \times (0.016)^4 = 0.405 \times 10^{-4} \text{ (kg·m}^2)$

• Coupling
$$Jc = \frac{1}{8} m_C \cdot d_C^2 = \frac{1}{8} \times 0.3 \times (0.03)^2 = 0.338 \times 10^{-4} \text{ (kg·m}^2)$$

- Load moment of inertia at motor shaft $J_L = J_{L1} + J_B + Jc = 1.25 \times 10^{-4} \; (\rm kg \cdot m^2)$
- 6. Load Moving Power

$$P_{O} = \frac{2\pi n_{M} \cdot T_{L}}{60} = \frac{2\pi \times 3,000 \times 0.139}{60} = 43.7 \text{ (W)}$$

7. Load Acceleration Power

$$Pa = \left(\frac{2\pi}{60}n_{M}\right)^{2} \frac{J_{L}}{ta} = \left(\frac{2\pi}{60} \times 3,000\right)^{2} \times \frac{1.25 \times 10^{-4}}{0.1} = 123.4 \text{ (W)}$$

8. Servomotor Provisional Selection

① Selection Conditions

- $T_L \leq Motor rated torque$
- $\frac{(Po + Pa)}{2}$ < Provisionally selected Servomotor rated output < (Po + Pa)
- $n_M \leq$ Rated motor speed
- $J_L \leq$ Allowable load moment of inertia

The following Servomotor meets the selection conditions.

SGM7J-01A Servomotor

$\ensuremath{\textcircled{O}}$ Specifications of the Provisionally Selected Servomotor

Item	Value
Rated Output	100 (W)
Rated Motor Speed	3,000 (min ⁻¹)
Rated Torque	0.318 (N·m)
Instantaneous Maximum Torque	1.11 (N·m)
Motor Moment of Inertia	0.0659 × 10 ⁻⁴ (kg⋅m²)
Allowable Load Moment of Inertia	$0.0659 \times 10^{-4} \times 35 = 2.31 \times 10^{-4} \text{ (kg·m}^2\text{)}$
Encoder Resolution	16,777,216 pulses/rev [24 bits]

Capacity Selection for Servomotors

9. Verification of the Provisionally Selected Servomotor

• Verification of required acceleration torque:

$$T_P = \frac{2\pi n_M (J_M + J_L)}{60ta} + T_L = \frac{2\pi \times 3,000 \times (0.0659 + 1.25) \times 10^{-4}}{60 \times 0.1} + 0.139$$

 \approx 0.552 (N·m) < Maximum instantaneous torque...Satisfactory

• Verification of required deceleration torque:

$$T_{S} = \frac{2\pi n_{M} (J_{M} + J_{L})}{60td} - T_{L} = \frac{2\pi \times 3,000 \times (0.0659 + 1.25) \times 10^{-4}}{60 \times 0.1} - 0.139$$

≈ 0.274 (N·m) < Maximum instantaneous torque...Satisfactory

• Verification of effective torque value:

$$Trms = \sqrt{\frac{T_P^2 \cdot ta + T_L^2 \cdot tc + Ts^2 \cdot td}{t}} = \sqrt{\frac{(0.552)^2 \times 0.1 + (0.139)^2 \times 0.9 + (0.274)^2 \times 0.1}{1.5}}$$

 \approx 0.192 (N·m) < Rated torque...Satisfactory

It has been verified that the provisionally selected Servomotor is applicable in terms of capacity. Position control is considered next.

10. Positioning Resolution

The electrical stopping precision δ is ±0.01 mm, so the positioning resolution Δ_{ℓ} is 0.01 mm. The ball screw lead P_B is 0.005 m, so the number of pulses per motor rotation is calculated with the following formula.

The number of pulses per revolution (pulses) = $\frac{P_B}{\Delta_\ell} = \frac{5 \text{ mm/rev}}{0.01 \text{ mm}} = 500 \text{ (pulses/rev)} < \text{Encoder resolution [16777216 (pulses/rev)]}$

The number of pulses per motor rotation is less than the encoder resolution (pulses/rev), so the provisionally selected Servomotor can be used.

11. Reference Pulse Frequency

The load speed υ_L is 15 m/min, or 1,000 × 15/60 mm/s and the positioning resolution (travel distance per pulse) is 0.01 mm/pulse, so the reference pulse frequency is calculated with the following formula.

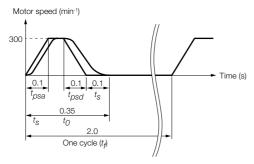
 $vs = \frac{1,000 \,^{\circ}L}{60 \times \Delta_{\ell}} = \frac{1,000 \times 15}{60 \times 0.01} = 25,000 \text{ (pps)}$

The reference pulse frequency is less than the maximum input pulse frequency, * so the provisionally selected Servomotor can be used.

*Refer to the specifications in the SERVOPACK manual for the maximum input pulse frequency.

It has been verified that the provisionally selected Servomotor is applicable for position control.

Capacity Selection Example for Direct Drive Servomotors


1. Mechanical Specifications

D _T	Item	Code	Value	Item	Code	Value
	Turntable Mass	W	12 kg	Acceleration/ Deceleration Time	$t_{p} = t_{psa} = t_{psd}$	0.1 s
Turntable	Turntable Diameter	D _T	300 mm	Operating Frequency	t _f	2 s
Servomotor	Rotational Angle per Cycle	θ	270 deg	Load Torque	TL	0 N∙m
	Positioning Time	t ₀	0.35 s	Settling Time	ts	0.1 s

2. Motor Speed of Direct Drive Servomotor

$$N_O = \frac{\theta}{360} \times \frac{60}{(t_O - t_p - t_s)} = \frac{270}{360} \times \frac{60}{(0.35 - 0.1 - 0.1)} = 300 \text{ (min}^{-1}\text{)}$$

3. Operation Pattern

4. Load Moment of Inertia

$$J_L = \frac{1}{8} \times D_T^2 \times W = \frac{1}{8} \times (300 \times 10^{-3})^2 \times 12 = 0.135 \text{ (kg·m}^2)$$

5. Load Acceleration/Deceleration Torque

$$T_a = J_L \times 2\pi \times \frac{N_O/60}{t_p} = 0.135 \times 2\pi \times \frac{300/60}{0.1} = 42.4 \text{ (N·m)}$$

6. Provisional Selection of Direct Drive Servomotor

① Selection Conditions

- Load acceleration/deceleration torque < Instantaneous maximum torque of Direct Drive Servomotor
- Load moment of inertia < Allowable load moment of inertia ratio (*J_R*) × Moment of inertia of Direct Drive Servomotor (*J_M*)

The following Servomotor meets the selection conditions.

• SGMCV-17CEA11

$\ensuremath{\mathbb Q}$ Specifications of the Provisionally Selected Servomotor

Item	Value
Rated Torque	17 (N∙m)
Instantaneous Maximum Torque	51 (N∙m)
Moment of Inertia (J _M)	0.00785 (kg·m²)
Allowable Load Moment of Inertia Ratio (J_R)	25

Capacity Selection for Servomotors

- 7. Verification of the Provisionally Selected Servomotor
 - Verification of required acceleration torque:

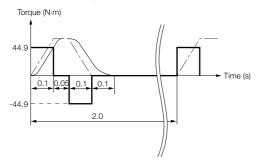
$$T_{Ma} = \frac{(J_L + J_M) \times N_O}{9.55 \times t_{psa}} = \frac{(0.135 + 0.00785) \times 300}{9.55 \times 0.1}$$

 \approx 44.9 (N·m) < Maximum instantaneous torque...Satisfactory

• Verification of required deceleration torque:

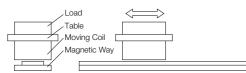
$$T_{Md} = -\frac{(J_L + J_M) \times N_O}{9.55 \times t_{psd}} = -\frac{(0.135 + 0.00785) \times 300}{9.55 \times 0.1}$$

- ≈ -44.9 (N·m) < Maximum instantaneous torque...Satisfactory
- Verification of effective torque value:

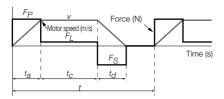

$$Trms = \sqrt{\frac{T_{Ma^2 \times t_{psa} + T_L^2 \times t_C + T_{Md^2 \times t_psd}}{tf}} = \sqrt{\frac{44.9^2 \times 0.1 + 0^2 \times 0.05 + (-44.9)^2 \times 0.1}{2}}$$

≈ 14.2 (N·m) < Rated torque...Satisfactory

 t_c =Time of constant motor speed = $t_0 - t_s - t_{psa} - t_{psd}$


8. Result

It has been verified that the provisionally selected Servomotor is applicable. The torque diagram is shown below.


Servomotor Capacity Selection Example for Linear Servomotors

1. Mechanical Specifications

Item	Code	Value	Item	Code	Value
Load Mass	m_W	1 kg	Acceleration Time	t _a	0.02 s
Table Mass	m _T	2 kg	Constant-speed Time	t _c	0.36 s
Motor Speed	V	2 m/s	Deceleration Time	t _d	0.02 s
Feeding Distance	1	0.76 m	Cycle Time	t	0.5 s
Friction Coefficient	μ	0.2	External Force on Linear Motion Section	F	0 N

2. Operation Pattern

- **3.** Steady-State Force (Excluding Servomotor Moving Coil) $F_L = \{9.8 \times \mu \times (m_W + m_T)\} + F = 9.8 \times 0.2 \times (1 + 2) + 0 = 5.88$ (N)
- 4. Acceleration Force (Excluding Servomotor Moving Coil)

$$F_P = (m_W + m_T) \times \frac{v}{t_a} + F_L = (1 + 2) \times \frac{2}{0.02} + 5.88 = 305.88$$
 (N)

5. Provisional Selection of Linear Servomotor

① Selection Conditions

- $F_P \leq Maximum$ force $\times 0.9$
- $F_{\rm s} \leq$ Maximum force $\times 0.9$
- $F_{rms} \leq$ Rated force $\times 0.9$

The following Servomotor Moving Coil and Magnetic Way meet the selection conditions.

- SGLGW-60A253CP Linear Servomotor Moving Coil
- SGLGM-60DDDC Linear Servomotor Magnetic Way
- 2 Specifications of the Provisionally Selected Servomotor

Item	Value
Maximum Force	440 (N)
Rated Force	140 (N)
Moving Coil Mass (m _M)	0.82 (kg)
Servomotor Magnetic Attraction (Fatt)	0 (N)

6. Verification of the Provisionally Selected Servomotor

Steady-State Force

 $F_L = \mu \{9.8 \times (m_W + m_T + m_M) + F_{att}\} = 0.2 \{9.8 \times (1 + 2 + 0.82) + 0\} = 7.5 \text{ (N)}$ • Verification of Acceleration Force

$$F_P = (m_W + m_T + m_M) \times \frac{v}{t_a} + F_L = (1 + 2 + 0.82) \times \frac{2}{0.02} + 7.5$$

= 389.5 (N) \leq Maximum force \times 0.9 (= 396 N)... Satisfactory

• Verification of Deceleration Force

$$F_{S} = (m_{W} + m_{T} + m_{M}) \times \frac{v}{t_{a}} - F_{L} = (1 + 2 + 0.82) \times \frac{2}{0.02} - 7.5$$

= 374.5 (N) \leq Maximum force $\,\times$ 0.9 (= 396 N)... Satisfactory

• Verification of Effective Force

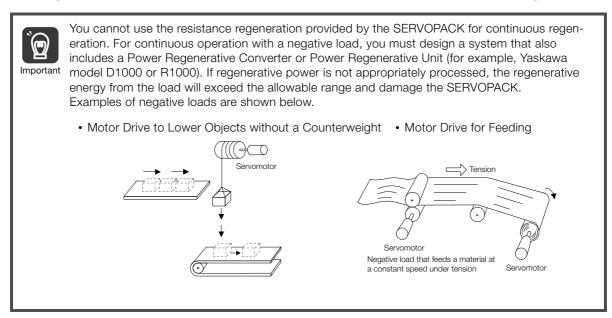
$$F_{rms} = \sqrt{\frac{F_P^2 \cdot t_a + F_L^2 \cdot t_c + F_s^2 \cdot t_d}{t}} = \sqrt{\frac{389.5^2 \times 0.02 + 7.5^2 \times 0.36 + 374.5^2 \times 0.02}{0.5}}$$

= 108.3 (N) \leq Rated force \times 0.9 (= 132.3 N)... Satisfactory

7. Result

It has been verified that the provisionally selected Servomotor is applicable.

Capacity Selection for Regenerative Resistors


If the regenerative power exceeds the amount that can be absorbed by charging the smoothing capacitor, a regenerative resistor is used.

Regenerative Power and Regenerative Resistance

The rotational energy of a driven machine such as a Servomotor that is returned to the SERVOPACK is called regenerative power. The regenerative power is absorbed by charging a smoothing capacitor. When the regenerative power exceeds the capacity of the capacitor, it is consumed by a regenerative resistor. (This is called resistance regeneration.)

The Servomotor is driven in a regeneration state in the following circumstances:

- While decelerating to a stop during acceleration/deceleration operation.
- While performing continuous downward operation on a vertical axis.
- During continuous operation in which the Servomotor is rotated by the load (i.e., a negative load).

Types of Regenerative Resistors

The following regenerative resistors can be used.

- Built-in regenerative resistor: A regenerative resistor that is built into the SERVOPACK. Not all SERVOPACKs have built-in regenerative resistors.
- External Regenerative Resistor: A regenerative resistor that is connected externally to a SERVO-PACK. These resistors are used when the smoothing capacitor and built-in regenerative resistor in the SERVOPACK cannot consume all of the regenerative power.

SERVOPACK Model		Built-In Regenerative Resistor	External Regenerative Resistor	
	R70A, R90A, 1R6A, 2R8A	None	Basically not required	
SGD7S-	3R8A, 5R5A, 7R6A, 120A, 180A, 200A, 330A	Standard feature *1	Basically not required	
	470A, 550A, 590A, 780A	None	Required *2	
SGD7W-	1R6A, 2R8A, 5R5A, 7R6A	Standard feature *1	Basically not required	

*1. Refer to the following section for the specifications of the regenerative resistors built into SERVOPACKs. Built-In Regenerative Resistor (page 333)

*2. An optional external Regenerative Resistor Unit is required.

Selecting External Regenerative Resistor

Use Yaskawa's SigmaJunmaSize+, an AC servo drive capacity selection program, to determine if you need an External Regenerative Resistor.

You can use one of the following two methods to manually calculate whether an External Regenerative Resistor is required. Refer to the following information if you do not use the SigmaJunmaSize+. Simple Calculation (page 349)

Calculating the Regenerative Energy (page 354)

Simple Calculation

When driving a Servomotor with a horizontal shaft, check if an External Regenerative Resistor is required using the following calculation method. The calculation method depends on the model of the SERVOPACK.

SERVOPACK Models SGD7S-R70A, -R90A, -1R6A, and -2R8A

Regenerative resistors are not built into the above SERVOPACKs. The total amount of energy that can be charged in the capacitors is given in the following table.

If the rotational energy (E_S) of the Servomotor and load exceeds the processable regenerative energy, then connect an External Regenerative Resistor.

Applicable SERVOPACK		Processable Regenerative Energy (Joules)	Remarks	
SGD7S-	R70A, R90A, 1R6A	24.2	Value when main circuit input voltage	
50D75-	2R8A	31.7	is 200 VAC	

Calculate the rotational energy (E_S) of the servo system with the following equation:

 $E_S = J \times (n_M)^2 / 182$ (Joules)

•
$$J = J_M + J_L$$

- J_M: Servomotor moment of inertia (kg⋅m²)
- J_L : Load moment of inertia at motor shaft (kg·m²)
- n_M: Servomotor operating motor speed (min⁻¹)

SERVOPACK Models SGD7S-3R8A, -5R5A, -7R6A, -120A, -180A, -200A, -330A, -470A, -550A, -590A, and -780A; SGD7W-1R6A, -2R8A, -5R5A, and -7R6A

These SERVOPACKs have built-in regenerative resistors. The allowable frequencies for regenerative operation of the Servomotor without a load in acceleration/deceleration operation during an operation cycle from 0 (min⁻¹) to the maximum motor speed and back to 0, are listed in the following table. Convert the data into the values for the actual motor speed and load moment of inertia to determine whether an External Regenerative Resistor is required.

Rotary Servomotors

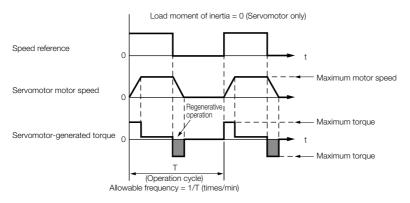
Servomotor Model		Regenerativ	equencies in ve Operation ons/Min)				Allowable Frequencies in Regenerative Operation (Operations/Min)		
		SERVOPACK Model: SGD7S	SERVOPACK Model: SGD7W (Simultaneous Operation of Two Axes)		Servomotor Model		SERVOPACK Model: SGD7S	SERVOPACK Model: SGD7W (Simultaneous Operation of Two Axes)	
	A5A	-	300			01A	_	200	
SGM7J-	01A	-	180		SGM7P-	C2A	-	46	
	C2A	_	130			04A	_	29	
	02A	-	46			08A	11	11	
	04A	-	25			15A	7.5	_	
	06A	30	30			03A	39	39	
	08A	15	15			05A	29	29	
	A5A	-	560			09A	6.9	6.9	
	01A	-	360			13A	6.1	_	
	C2A	-	260			20A	7.4	_	
	02A	-	87		SGM7G-	30A	9.5	-	
	04A	-	56			44A	6.4	_	
	06A	77	77			55A	24	_	
	08A	31	31			75A	34	-	
SGM7A-	10A	31	-			1AA	39	_	
	15A	15	-			1EA	31	_	
	20A	19	-				1		
	25A	15	_						
	30A	6.9	_						
	40A	11	_						
	50A	8.8	_						
	70A	86	_						

Direct Drive Servomotors

			requencies in ve Operation ons/Min)	
Servomotor Model		SERVOPACK Model: SGD7S	SERVOPACK Model: SGD7W (Simultaneous Operation of Two Axes)	
	02B	-	62	
	05B	_	34	
	07B	-	22	
	04C	-	22	
	08D	-	6.1	
	10C	-	19	
	14C	-	22	
	17D	-	7	
SGMCS-	25D	-	9.3	
	16E	3.7	3.7	
	35E	9.7	9.7	
	45M	25	25	
	80M	19	-	
	80N	8.9	_	
	1AM	22	-	
	1EN	11	-	
	2ZN	9.1	_	

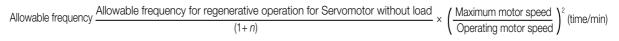
		Allowable Frequencies in Regenerative Operation (Operations/Min)				
Servomoto	Servomotor Model		SERVOPACK Model: SGD7W (Simultaneous Operation of Two Axes)			
	04B	_	75			
	08C	-	21			
SGMCV-	10B	-	48			
	14B	65	65			
	17C	30	30			
	25C	31	31			

Linear Servomotors


Servomotor Model		Regenerativ	requencies in ve Operation ons/Min)			Allowable Frequencies in Regenerative Operation (Operations/Min)	
		SERVOPACK Model: SGD7S	SERVOPACK Model: SGD7W (Simultaneous Operation of Two Axes)	Servom	otor Model	SERVOPACK Model: SGD7S	SERVOPACK Model: SGD7W (Simultaneous Operation of Two Axes)
	30A050C	-	190		30A070A	-	38
	30A080C	-	120		30A120A	-	21
SGLGW-	SGLGW- 40A140C	_	56		30A230A	22	11
Using a	40A253C	-	32	SGLFW2-	45A200A	16	16
Stan-	40A365C	-	22		45A380A	10*1	_
Mag- 60 netic 60	60A140C	_	49		40A36UA	17 ^{*2}	_
	60A253C	-	27		90A200A	14	-
	60A365C	37	37		90A380A	11	_
	90A200C	34	_		90A560A	18	_
	90A370C	33	-		1DA380A	21	_
	90A535C	24	_		1DA560A	32	_
SGLGW-	40A140C	-	80		20A170A	15	15
Using a	40A253C	_	45		20A320A	8.3	8.3
High- Force	40A365C	62	62		20A460A	7.1	_
Mag-	60A140C	-	64		35A170A	10	10
netic	60A253C	71	71		35A170H	8.5	8.5
Way	60A365C	49	49		35A320A	7	_
	20A090A	_	27	SGLTW-	35A320H	5.9	_
	20A120A	_	21	JULI W-	35A460A	7.6	_
	35A120A	-	14		40A400B	13	_
SGLFW-	35A230A	16	16		40A600B	19	_
	50A200B	10	10		50A170H	15	15
	50A380B	6.9	_		50A320H	11	_
	1ZA200B	7.8	_		80A400B	28	
	1ZA380B	6.6	-		80A600B	180	-

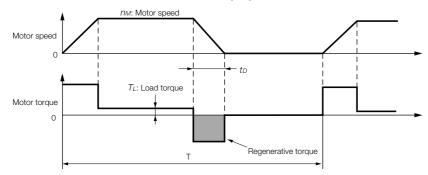
*1. This value is in combination with the SGD7S-120A.

*2. This value is in combination with the SGD7S-180A.


Cylinder-Type Servomotors

Servomotor Model		Allowable Frequencies in Regenerative Operation (Operations/Min) SERVOPACK Model: SERVOPACK SGD7W			
		Model: SGD7S	(Simultaneous Opera- tion of Two Axes)		
SGLC-	D16A085A	-	100		
	D16A115A	_	75		
	D16A145A	-	60		
	D20A100A	-	50		
	D20A135A	-	37		
	D20A170A	-	30		
	D25A125A	_	30		
	D25A170A	-	21		
	D25A215A	33	33		
	D32A165A	_	16		
	D32A225A	24	24		
	D32A285A	18	18		

Operating Conditions for Calculating the Allowable Regenerative Frequency


Use the following equation to calculate the allowable frequency for regenerative operation.

- $n = J_L/J_M$
- J_M: Servomotor moment of inertia (kg·m²)
- J_L : Load moment of inertia at motor shaft (kg·m²)

Calculating the Regenerative Energy

This section shows how to calculate the regenerative resistor capacity for the acceleration/deceleration operation shown in the following figure.

Calculation Procedure for Regenerative Resistor Capacity

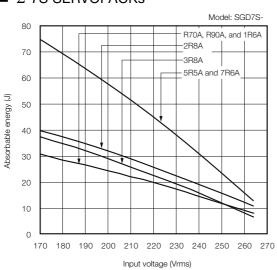
Step	Item	Code	Formula	
1	Calculate the rotational energy of the Servo- motor.		$E_S = Jn_M^2 / 182$	
2	Calculate the energy consumed by load loss during the deceleration period		$E_L = (\pi/60) n_M T_L t_D$ Note: If the load loss is unknown, calculate the value with E_L set to 0.	
3	Calculate the energy lost from Servomotor winding resistance.		(Value calculated from the graphs in \blacklozenge Serv motor Winding Resistance Loss on page 35 $\times t_D$	
4	Calculate the energy that can be absorbed by the SERVOPACK.	E _C	Calculate from the graphs in ◆ SERVOPACK- absorbable Energy on page 355	
			$E_K = E_S - (E_L + E_M + E_C)$	
F	Calculate the energy consumed by the	E _K	$E_{K} = E_{S} - (E_{L} + E_{M} + E_{C}) + E_{G}^{*}$	
5	regenerative resistor.		Note: Use this formula if there will be con- tinuous periods of regenerative oper- ation, such as for a vertical axis.	
6	Calculate the required regenerative resistor capacity (W).	W _K	$W_K = E_K / (0.2 \times T)$	

* E_G (joules): Energy for continuous period of regenerative operation

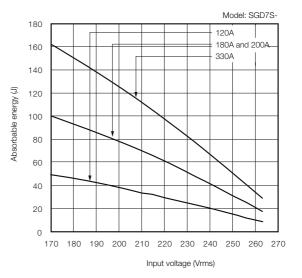
 $E_G = (2\pi/60) \; n_{MG} T_G t_G$

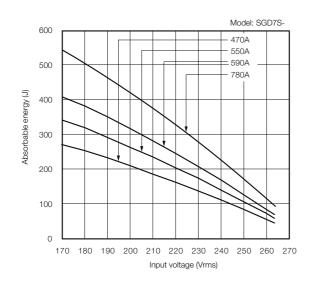
- + T_G : Servomotor's generated torque in continuous period of regenerative operation (N·m)
- n_{MG}: Servomotor's motor speed for same operation period as above (min⁻¹)
- + t_G : Same operation period as above (s)

Note: 1. The 0.2 in the equation for calculating W_K is the value when the regenerative resistor's utilized load ratio is 20%.

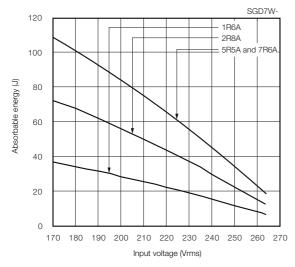

2. The units for the various symbols are given in the following table.

Code	Description	Code	Description
$E_{\rm S}$ to $E_{\rm K}$	Energy in joules (J)	T_L	Load torque (N·m)
W _K	Required regenerative resistor capacity (W)	t _D	Deceleration stopping time (s)
J	$= J_M + J_L (\text{kg·m}^2)$	Т	Servomotor repeat operation cycle (s)
n _M	Servomotor motor speed (min ⁻¹)		·

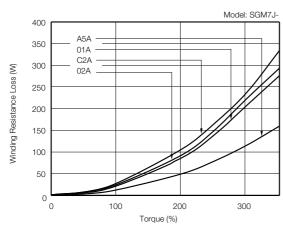

If the value of W_K does not exceed the capacity of the built-in regenerative resistor of the SERVO-PACK, an External Regenerative Resistor is not required. For details on the built-in regenerative resisters, refer to the SERVOPACK specifications. If the value of W_K exceeds the capacity of the built-in regenerative resistor, install an External Regenerative Resistor with a capacity equal to the value for W calculated above.

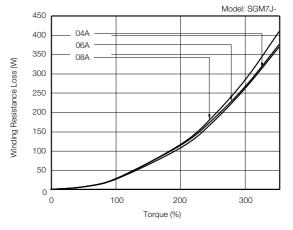

SERVOPACK-absorbable Energy

The following figures show the relationship between the SERVOPACK's input power supply voltage and its absorbable energy.

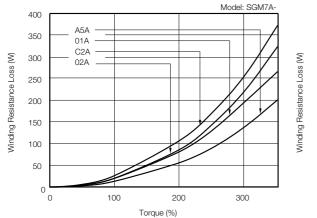


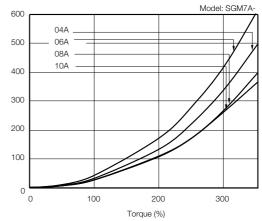
Σ-7S SERVOPACKs

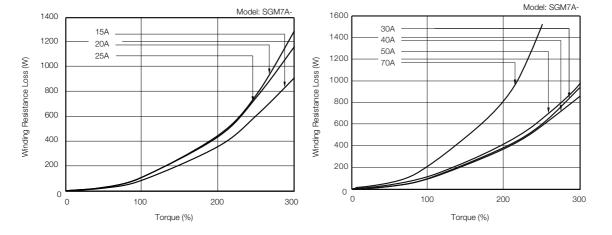


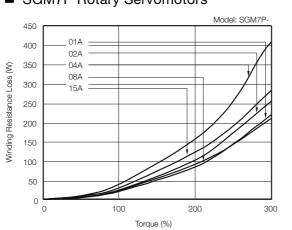


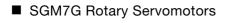
Servomotor Winding Resistance Loss

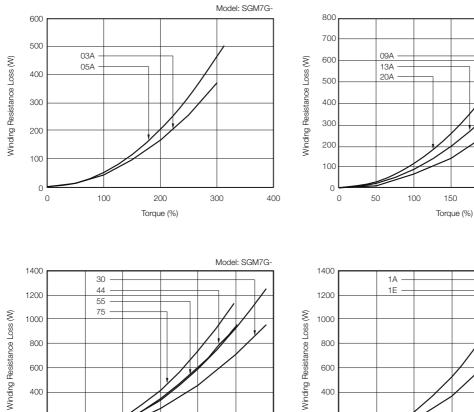

The following figures show the relationship for each Servomotor between the Servomotor's generated torque and the winding resistance loss.

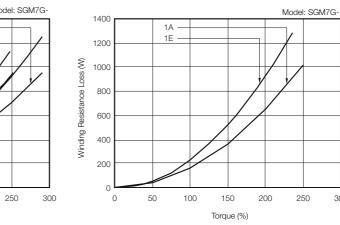


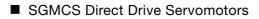

SGM7J Rotary Servomotors

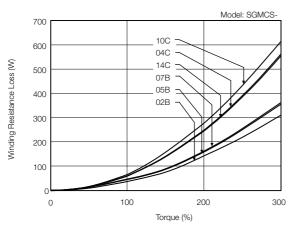

SGM7A Rotary Servomotors

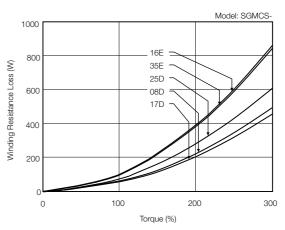


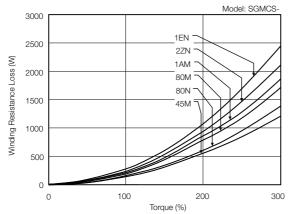

Model: SGM7G-

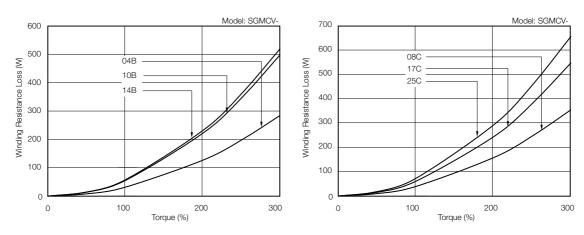


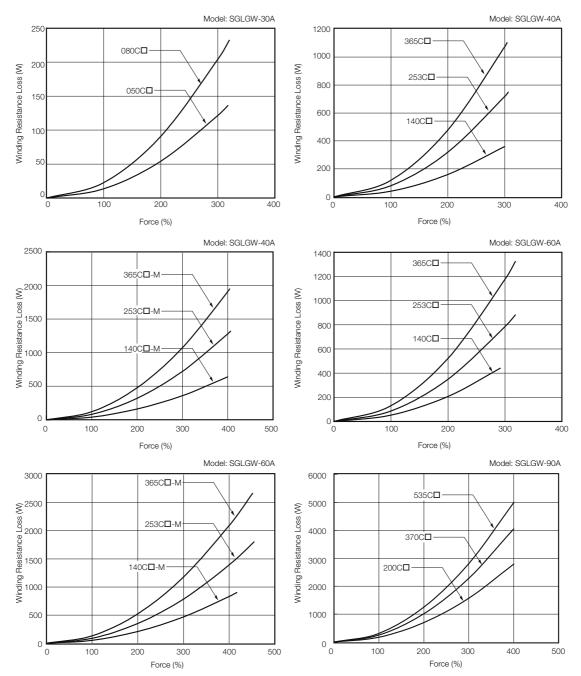

SGM7P Rotary Servomotors

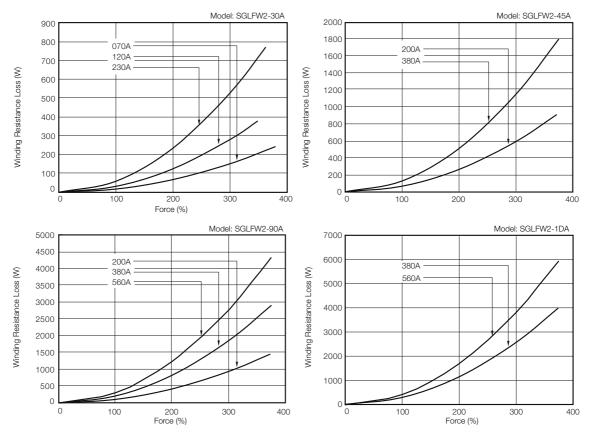


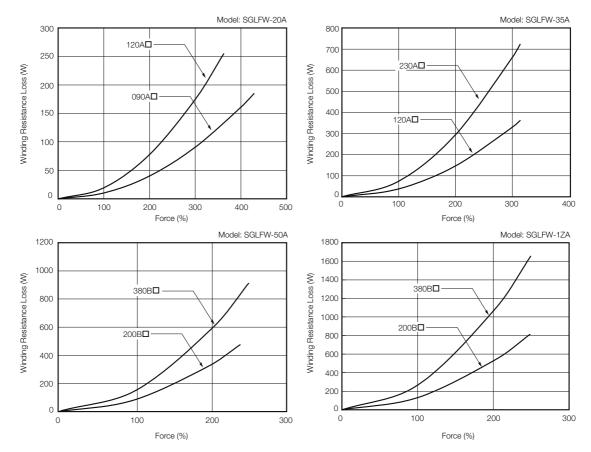

Torque (%)



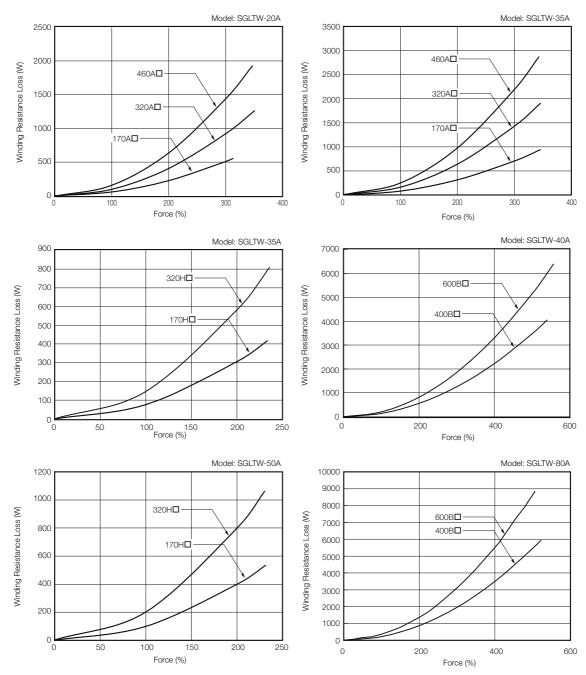





SGMCV Direct Drive Servomotors


SGLGW Linear Servomotors

■ SGLFW2 Linear Servomotors



SGLFW Linear Servomotors

Capacity Selection for Regenerative Resistors

■ SGLTW Linear Servomotors

■ SGLC Linear Servomotors

International Standards

● : Certified, – : Not Cert						lot Certified
Product		Model	UL/CSA Standards	CE Marking	KC Mark	RoHS Directive
				CE		
SERVOPACKs		SGD7S	Scheduled for 2014	Scheduled for 2014	Scheduled for 2014	•
		SGD7W	Scheduled for 2014	Scheduled for 2014	Scheduled for 2014	•
Option Modules	Fully- Closed Modules	SGDV- OFA01A ^{*1}	•	•	•	•

		UL/CSA Standards	CE Marking		
Product	Model	c AL ® us	CE	RoHS Directive	
	SGM7J	Scheduled for 2014	Scheduled for 2014	•	
Rotary Servomotors	SGM7A	Scheduled for 2014	Scheduled for 2014	•	
notary Servomotors	SGM7P	Scheduled for 2014	Scheduled for 2014	•	
	SGM7G	Scheduled for 2014	Scheduled for 2014	•	
Direct Drive	SGMCS	-	*3	•* ²	
Servomotors	SGMCV	Scheduled for 2014	•	•	
	SGLGW (SGLGM) ^{*4}	_	*5	•	
	SGLFW (SGLFM) ^{*4}	_	*5	•	
Linear Servomotors	SGLFW2 (SGLFM2) ^{*4}	Scheduled for 2015	Scheduled for 2015	•	
	SGLTW (SGLTM) ^{*4}	_	*5	•	
	SGLC	-	*5	•	

*1. Use this model number to purchase the Option Module separately.

*2. Estimates are provided for RoHS-compliant products. The model numbers have an "-E" suffix.

*3. CE Marking certification has not yet been received for SGMCS-DDM and SGMCS-DDN Direct Drive Servomotors.

CE Marking certification has been received for the following Direct Drive Servomotors: SGMCS-DDB, SGMCS-DDC, SGMCS-DDD, and SGMCS-DDE. Contact your Yaskawa representative if the CE Marking label is required.

*4. The model numbers of the Magnetic Ways of Linear Servomotors are given in parentheses.

*5. CE Marking certification has been received. Contact your Yaskawa representative if the CE Marking label is required.

Warranty

Details of Warranty

Warranty Period

The warranty period for a product that was purchased (hereinafter called the "delivered product") is one year from the time of delivery to the location specified by the customer or 18 months from the time of shipment from the Yaskawa factory, whichever is sooner.

Warranty Scope

Yaskawa shall replace or repair a defective product free of charge if a defect attributable to Yaskawa occurs during the above warranty period.

This warranty does not cover defects caused by the delivered product reaching the end of its service life and replacement of parts that require replacement or that have a limited service life.

This warranty does not cover failures that result from any of the following causes.

- Improper handling, abuse, or use in unsuitable conditions or in environments not described in product catalogs or manuals, or in any separately agreed-upon specifications
- · Causes not attributable to the delivered product itself
- Modifications or repairs not performed by Yaskawa
- Use of the delivered product in a manner in which it was not originally intended
- Causes that were not foreseeable with the scientific and technological understanding at the time of shipment from Yaskawa
- · Events for which Yaskawa is not responsible, such as natural or human-made disasters

Limitations of Liability

- Yaskawa shall in no event be responsible for any damage or loss of opportunity to the customer that arises due to failure of the delivered product.
- Yaskawa shall not be responsible for any programs (including parameter settings) or the results of
 program execution of the programs provided by the user or by a third party for use with programmable Yaskawa products.
- The information described in product catalogs or manuals is provided for the purpose of the customer purchasing the appropriate product for the intended application. The use thereof does not guarantee that there are no infringements of intellectual property rights or other proprietary rights of Yaskawa or third parties, nor does it construe a license.
- Yaskawa shall not be responsible for any damage arising from infringements of intellectual property rights or other proprietary rights of third parties as a result of using the information described in catalogs or manuals.

Suitability for Use

- It is the customer's responsibility to confirm conformity with any standards, codes, or regulations that apply if the Yaskawa product is used in combination with any other products.
- The customer must confirm that the Yaskawa product is suitable for the systems, machines, and equipment used by the customer.
- Consult with Yaskawa to determine whether use in the following applications is acceptable. If use in the application is acceptable, use the product with extra allowance in ratings and specifications, and provide safety measures to minimize hazards in the event of failure.
 - Outdoor use, use involving potential chemical contamination or electrical interference, or use in conditions or environments not described in product catalogs or manuals
 - Nuclear energy control systems, combustion systems, railroad systems, aviation systems, vehicle systems, medical equipment, amusement machines, and installations subject to separate industry or government regulations
 - Systems, machines, and equipment that may present a risk to life or property
 - Systems that require a high degree of reliability, such as systems that supply gas, water, or electricity, or systems that operate continuously 24 hours a day
 - · Other systems that require a similar high degree of safety

- Never use the product for an application involving serious risk to life or property without first ensuring that the system is designed to secure the required level of safety with risk warnings and redundancy, and that the Yaskawa product is properly rated and installed.
- The circuit examples and other application examples described in product catalogs and manuals are for reference. Check the functionality and safety of the actual devices and equipment to be used before using the product.
- Read and understand all use prohibitions and precautions, and operate the Yaskawa product correctly to prevent accidental harm to third parties.

Specifications Change

The names, specifications, appearance, and accessories of products in product catalogs and manuals may be changed at any time based on improvements and other reasons. The next editions of the revised catalogs or manuals will be published with updated code numbers. Consult with your Yaskawa representative to confirm the actual specifications before purchasing a product.

Σ -7 SERIES

IRUMA BUSINESS CENTER (SOLUTION CENTER)

480, Kamifujisawa, Iruma, Saitama 358-8555, Japar Phone 81-4-2962-5151 Fax 81-4-2962-6138 http://www.yaskawa.co.jp

YASKAWA AMERICA, INC.

2121 Norman Drive South, Waukegan, IL 60085, U.S.A. Phone 1-800-YASKAWA (927-5292) or 1-847-887-7000 Fax 1-847-887-7310 http://www.vaskawa.com

YASKAWA ELÉTRICO DO BRASIL LTDA.

Avenida Piraporinha 777, Diadema, São Paulo, 09950-000, Brazil Phone 55-11-3585-1100 Fax 55-11-3585-1187 http://www.yaskawa.com.br

YASKAWA EUROPE GmbH

Hauptstrasse 185, Eschborn 65760, Germany Phone 49-6196-569-300 Fax 49-6196-569-398 http://www.yaskawa.eu.com

YASKAWA ELECTRIC KOREA CORPORATION

9F, Kyobo Securities Bldg., 26-4, Yeouido-dong, Yeongdeungpo-gu, Seoul, 150-737, Korea Phone 82-2-784-7844 Fax 82-2-784-8495 http://www.yaskawa.co.kr

YASKAWA ELECTRIC (SINGAPORE) PTE. LTD.

151 Lorong Chuan, #04-02A, New Tech Park 556741, Singapore Phone 65-6282-3003 Fax 65-6289-3003 http://www.yaskawa.com.sg

YASKAWA ELECTRIC (THAILAND) CO., LTD.

252/125-126 27th Floor, Tower B Muang Thai-Phatra Complex Building, Rachadaphisek Road, Huaykwang, Bangkok 10310, Thailand Phone 66-2693-2200 Fax 66-2693-4200 http://www.yaskawa.co.th

YASKAWA ELECTRIC (CHINA) CO., LTD.

22F, One Corporate Avenue, No.222 Hubin Road, Huangpu District, Shanghai 200021, China Phone 86-21-5385-2200 Fax 86-21-5385-3299 http://www.yaskawa.com.cn

YASKAWA ELECTRIC (CHINA) CO., LTD. BEIJING OFFICE

Room 1011, Tower W3 Oriental Plaza, No.1 East Chang An Ave., Dong Cheng District, Beijing 100738, China Phone 86-10-8518-4086 Fax 86-10-8518-4082

YASKAWA ELECTRIC TAIWAN CORPORATION

9F, 16, Nanking E. Rd., Sec. 3, Taipei 104, Taiwan Phone 886-2-2502-5003 Fax 886-2-2505-1280 http://www.vaskawa-taiwan.com.tw

YASKAWA ELECTRIC CORPORATION

In the event that the end user of this product is to be the military and said product is to be employed in any weapons systems or the manufacture thereof, the export will fall under the relevant regulations as stipulated in the Foreign Exchange and Foreign Trade Regulations. Therefore, be sure to follow all procedures and submit all relevant documentation according to any and all rules, regulations and laws that may apply. Specifications are subject to change without notice for ongoing product modifications and improvements.

© 2014 YASKAWA ELECTRIC CORPORATION. All rights reserved.

LITERATURE NO. KAEP S800001 23B Published in Japan October 2014 14-2 1-1 14-7-11